Module traceon.mesher
Classes
class GeometricObject
-
Expand source code
class GeometricObject(ABC): """The Mesh class (and the classes defined in `traceon.geometry`) are subclasses of `traceon.mesher.GeometricObject`. This means that they all can be moved, rotated, mirrored.""" @abstractmethod def map_points(self, fun: Callable[[np.ndarray], np.ndarray]) -> Any: """Create a new geometric object, by mapping each point by a function. Parameters ------------------------- fun: (3,) float -> (3,) float Function taking a three dimensional point and returning a three dimensional point. Returns ------------------------ GeometricObject This function returns the same type as the object on which this method was called.""" ... def move(self, dx=0., dy=0., dz=0.): """Move along x, y or z axis. Parameters --------------------------- dx: float Amount to move along the x-axis. dy: float Amount to move along the y-axis. dz: float Amount to move along the z-axis. Returns --------------------------- GeometricObject This function returns the same type as the object on which this method was called.""" assert all([isinstance(d, float) or isinstance(d, int) for d in [dx, dy, dz]]) return self.map_points(lambda p: p + np.array([dx, dy, dz])) def rotate(self, Rx=0., Ry=0., Rz=0., origin=[0., 0., 0.]): """Rotate counterclockwise around the x, y or z axis. Only one axis supported at the same time (rotations do not commute). Parameters ------------------------------------ Rx: float Amount to rotate around the x-axis (radians). Ry: float Amount to rotate around the y-axis (radians). Rz: float Amount to rotate around the z-axis (radians). origin: (3,) float Point around which to rotate, which is the origin by default. Returns -------------------------------------- GeometricObject This function returns the same type as the object on which this method was called.""" assert sum([Rx==0., Ry==0., Rz==0.]) >= 2, "Only supply one axis of rotation" if Rx !=0.: return self.rotate_around_axis([1,0,0], angle=Rx, origin=origin) if Ry !=0.: return self.rotate_around_axis([0,1,0], angle=Ry, origin=origin) if Rz !=0.: return self.rotate_around_axis([0,0,1], angle=Rz, origin=origin) def rotate_around_axis(self, axis=[0., 0, 1.], angle=0., origin=[0., 0., 0.]): """ Rotate counterclockwise around a general axis defined by a vector. Parameters ------------------------------------ axis: (3,) float Vector defining the axis of rotation. Must be non-zero. angle: float Amount to rotate around the axis (radians). origin: (3,) float Point around which to rotate, which is the origin by default. Returns -------------------------------------- GeometricObject This function returns the same type as the object on which this method was called. """ origin = np.array(origin, dtype=float) assert origin.shape == (3,), "Please supply a 3D point for origin" axis = np.array(axis, dtype=float) assert axis.shape == (3,), "Please supply a 3D vector for axis" axis = axis / np.linalg.norm(axis) if angle == 0: return self.map_points(lambda x: x) # Rotation is implemented using Rodrigues' rotation formula # See: https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula K = np.array([ [0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]) K2 = K @ K # Transformation matrix that maps a vector to its cross product with the rotation axis I = np.eye(3) R = I + np.sin(angle) * K + (1 - np.cos(angle)) * K2 return self.map_points(lambda p: origin + R @ (p - origin)) def mirror_xz(self): """Mirror object in the XZ plane. Returns -------------------------------------- GeometricObject This function returns the same type as the object on which this method was called.""" return self.map_points(lambda p: np.array([p[0], -p[1], p[2]])) def mirror_yz(self): """Mirror object in the YZ plane. Returns -------------------------------------- GeometricObject This function returns the same type as the object on which this method was called.""" return self.map_points(lambda p: np.array([-p[0], p[1], p[2]])) def mirror_xy(self): """Mirror object in the XY plane. Returns -------------------------------------- GeometricObject This function returns the same type as the object on which this method was called.""" return self.map_points(lambda p: np.array([p[0], p[1], -p[2]]))
The Mesh class (and the classes defined in
traceon.geometry
) are subclasses ofGeometricObject
. This means that they all can be moved, rotated, mirrored.Ancestors
- abc.ABC
Subclasses
Methods
def map_points(self, fun: Callable[[numpy.ndarray], numpy.ndarray]) ‑> Any
-
Expand source code
@abstractmethod def map_points(self, fun: Callable[[np.ndarray], np.ndarray]) -> Any: """Create a new geometric object, by mapping each point by a function. Parameters ------------------------- fun: (3,) float -> (3,) float Function taking a three dimensional point and returning a three dimensional point. Returns ------------------------ GeometricObject This function returns the same type as the object on which this method was called.""" ...
Create a new geometric object, by mapping each point by a function.
Parameters
fun
:(3,) float -> (3,) float
- Function taking a three dimensional point and returning a three dimensional point.
Returns
This function returns the same type as the object on which this method was called.
def mirror_xy(self)
-
Expand source code
def mirror_xy(self): """Mirror object in the XY plane. Returns -------------------------------------- GeometricObject This function returns the same type as the object on which this method was called.""" return self.map_points(lambda p: np.array([p[0], p[1], -p[2]]))
Mirror object in the XY plane.
Returns
This function returns the same type as the object on which this method was called.
def mirror_xz(self)
-
Expand source code
def mirror_xz(self): """Mirror object in the XZ plane. Returns -------------------------------------- GeometricObject This function returns the same type as the object on which this method was called.""" return self.map_points(lambda p: np.array([p[0], -p[1], p[2]]))
Mirror object in the XZ plane.
Returns
This function returns the same type as the object on which this method was called.
def mirror_yz(self)
-
Expand source code
def mirror_yz(self): """Mirror object in the YZ plane. Returns -------------------------------------- GeometricObject This function returns the same type as the object on which this method was called.""" return self.map_points(lambda p: np.array([-p[0], p[1], p[2]]))
Mirror object in the YZ plane.
Returns
This function returns the same type as the object on which this method was called.
def move(self, dx=0.0, dy=0.0, dz=0.0)
-
Expand source code
def move(self, dx=0., dy=0., dz=0.): """Move along x, y or z axis. Parameters --------------------------- dx: float Amount to move along the x-axis. dy: float Amount to move along the y-axis. dz: float Amount to move along the z-axis. Returns --------------------------- GeometricObject This function returns the same type as the object on which this method was called.""" assert all([isinstance(d, float) or isinstance(d, int) for d in [dx, dy, dz]]) return self.map_points(lambda p: p + np.array([dx, dy, dz]))
Move along x, y or z axis.
Parameters
dx
:float
- Amount to move along the x-axis.
dy
:float
- Amount to move along the y-axis.
dz
:float
- Amount to move along the z-axis.
Returns
This function returns the same type as the object on which this method was called.
def rotate(self, Rx=0.0, Ry=0.0, Rz=0.0, origin=[0.0, 0.0, 0.0])
-
Expand source code
def rotate(self, Rx=0., Ry=0., Rz=0., origin=[0., 0., 0.]): """Rotate counterclockwise around the x, y or z axis. Only one axis supported at the same time (rotations do not commute). Parameters ------------------------------------ Rx: float Amount to rotate around the x-axis (radians). Ry: float Amount to rotate around the y-axis (radians). Rz: float Amount to rotate around the z-axis (radians). origin: (3,) float Point around which to rotate, which is the origin by default. Returns -------------------------------------- GeometricObject This function returns the same type as the object on which this method was called.""" assert sum([Rx==0., Ry==0., Rz==0.]) >= 2, "Only supply one axis of rotation" if Rx !=0.: return self.rotate_around_axis([1,0,0], angle=Rx, origin=origin) if Ry !=0.: return self.rotate_around_axis([0,1,0], angle=Ry, origin=origin) if Rz !=0.: return self.rotate_around_axis([0,0,1], angle=Rz, origin=origin)
Rotate counterclockwise around the x, y or z axis. Only one axis supported at the same time (rotations do not commute).
Parameters
Rx
:float
- Amount to rotate around the x-axis (radians).
Ry
:float
- Amount to rotate around the y-axis (radians).
Rz
:float
- Amount to rotate around the z-axis (radians).
origin
:(3,) float
- Point around which to rotate, which is the origin by default.
Returns
This function returns the same type as the object on which this method was called.
def rotate_around_axis(self, axis=[0.0, 0, 1.0], angle=0.0, origin=[0.0, 0.0, 0.0])
-
Expand source code
def rotate_around_axis(self, axis=[0., 0, 1.], angle=0., origin=[0., 0., 0.]): """ Rotate counterclockwise around a general axis defined by a vector. Parameters ------------------------------------ axis: (3,) float Vector defining the axis of rotation. Must be non-zero. angle: float Amount to rotate around the axis (radians). origin: (3,) float Point around which to rotate, which is the origin by default. Returns -------------------------------------- GeometricObject This function returns the same type as the object on which this method was called. """ origin = np.array(origin, dtype=float) assert origin.shape == (3,), "Please supply a 3D point for origin" axis = np.array(axis, dtype=float) assert axis.shape == (3,), "Please supply a 3D vector for axis" axis = axis / np.linalg.norm(axis) if angle == 0: return self.map_points(lambda x: x) # Rotation is implemented using Rodrigues' rotation formula # See: https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula K = np.array([ [0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]) K2 = K @ K # Transformation matrix that maps a vector to its cross product with the rotation axis I = np.eye(3) R = I + np.sin(angle) * K + (1 - np.cos(angle)) * K2 return self.map_points(lambda p: origin + R @ (p - origin))
Rotate counterclockwise around a general axis defined by a vector.
Parameters
axis
:(3,) float
- Vector defining the axis of rotation. Must be non-zero.
angle
:float
- Amount to rotate around the axis (radians).
origin
:(3,) float
- Point around which to rotate, which is the origin by default.
Returns
This function returns the same type as the object on which this method was called.
class Mesh (points=[],
lines=[],
triangles=[],
physical_to_lines={},
physical_to_triangles={},
ensure_outward_normals=True)-
Expand source code
class Mesh(Saveable, GeometricObject): """Mesh containing lines and triangles. Groups of lines or triangles can be named. These names are later used to apply the correct excitation. Line elements can be curved (or 'higher order'), in which case they are represented by four points per element. Note that `Mesh` is a subclass of `traceon.mesher.GeometricObject`, and therefore can be easily moved and rotated.""" def __init__(self, points=[], lines=[], triangles=[], physical_to_lines={}, physical_to_triangles={}, ensure_outward_normals=True): # Ensure the correct shape even if empty arrays if len(points): self.points = np.array(points, dtype=np.float64) else: self.points = np.empty((0,3), dtype=np.float64) if len(lines) or (isinstance(lines, np.ndarray) and len(lines.shape)==2): self.lines = np.array(lines, dtype=np.uint64) else: self.lines = np.empty((0,2), dtype=np.uint64) if len(triangles): self.triangles = np.array(triangles, dtype=np.uint64) else: self.triangles = np.empty((0, 3), dtype=np.uint64) self.physical_to_lines = physical_to_lines.copy() self.physical_to_triangles = physical_to_triangles.copy() self._remove_degenerate_triangles() self._deduplicate_points() if ensure_outward_normals: for el in self.get_electrodes(): self.ensure_outward_normals(el) assert np.all( (0 <= self.lines) & (self.lines < len(self.points)) ), "Lines reference points outside points array" assert np.all( (0 <= self.triangles) & (self.triangles < len(self.points)) ), "Triangles reference points outside points array" assert np.all([np.all( (0 <= group) & (group < len(self.lines)) ) for group in self.physical_to_lines.values()]) assert np.all([np.all( (0 <= group) & (group < len(self.triangles)) ) for group in self.physical_to_triangles.values()]) assert not len(self.lines) or self.lines.shape[1] in [2,4], "Lines should contain either 2 or 4 points." assert not len(self.triangles) or self.triangles.shape[1] in [3,6], "Triangles should contain either 3 or 6 points" def is_higher_order(self): """Whether the mesh contains higher order elements. Returns ---------------------------- bool""" return isinstance(self.lines, np.ndarray) and len(self.lines.shape) == 2 and self.lines.shape[1] == 4 def map_points(self, fun): """See `GeometricObject` """ new_points = np.empty_like(self.points) for i in range(len(self.points)): new_points[i] = fun(self.points[i]) assert new_points.shape == self.points.shape and new_points.dtype == self.points.dtype return Mesh(new_points, self.lines, self.triangles, self.physical_to_lines, self.physical_to_triangles) def _remove_degenerate_triangles(self): areas = triangle_areas(self.points[self.triangles[:,:3]]) degenerate = areas < 1e-12 map_index = np.arange(len(self.triangles)) - np.cumsum(degenerate) self.triangles = self.triangles[~degenerate] for k in self.physical_to_triangles.keys(): v = self.physical_to_triangles[k] self.physical_to_triangles[k] = map_index[v[~degenerate[v]]] if np.any(degenerate): log_debug(f'Removed {sum(degenerate)} degenerate triangles') def _deduplicate_points(self): if not len(self.points): return # Step 1: Make a copy of the points array using np.array points_copy = np.array(self.points, dtype=np.float64) # Step 2: Zero the low 16 bits of the mantissa of the X, Y, Z coordinates points_copy.view(np.uint64)[:] &= np.uint64(0xFFFFFFFFFFFF0000) # Step 3: Use Numpy lexsort directly on points_copy sorted_indices = np.lexsort(points_copy.T) points_sorted = points_copy[sorted_indices] # Step 4: Create a mask to identify unique points equal_to_previous = np.all(points_sorted[1:] == points_sorted[:-1], axis=1) keep_mask = np.concatenate(([True], ~equal_to_previous)) # Step 5: Compute new indices for the unique points new_indices_in_sorted_order = np.cumsum(keep_mask) - 1 # Map old indices to new indices old_to_new_indices = np.empty(len(points_copy), dtype=np.uint64) old_to_new_indices[sorted_indices] = new_indices_in_sorted_order # Step 6: Update the points array with unique points self.points = points_sorted[keep_mask] # Step 7: Update all indices if len(self.triangles): self.triangles = old_to_new_indices[self.triangles] if len(self.lines): self.lines = old_to_new_indices[self.lines] @staticmethod def _merge_dicts(dict1, dict2): dict_: dict[str, np.ndarray] = {} for (k, v) in chain(dict1.items(), dict2.items()): if k in dict_: dict_[k] = np.concatenate( (dict_[k], v), axis=0) else: dict_[k] = v return dict_ def __add__(self, other): """Add meshes together, using the + operator (mesh1 + mesh2). Returns ------------------------------ Mesh A new mesh consisting of the elements of the added meshes""" if not isinstance(other, Mesh): return NotImplemented N_points = len(self.points) N_lines = len(self.lines) N_triangles = len(self.triangles) points = _concat_arrays(self.points, other.points) lines = _concat_arrays(self.lines, other.lines+N_points) triangles = _concat_arrays(self.triangles, other.triangles+N_points) other_physical_to_lines = {k:(v+N_lines) for k, v in other.physical_to_lines.items()} other_physical_to_triangles = {k:(v+N_triangles) for k, v in other.physical_to_triangles.items()} physical_lines = Mesh._merge_dicts(self.physical_to_lines, other_physical_to_lines) physical_triangles = Mesh._merge_dicts(self.physical_to_triangles, other_physical_to_triangles) return Mesh(points=points, lines=lines, triangles=triangles, physical_to_lines=physical_lines, physical_to_triangles=physical_triangles) def extract_physical_group(self, name): """Extract a named group from the mesh. Parameters --------------------------- name: str Name of the group of elements Returns -------------------------- Mesh Subset of the mesh consisting only of the elements with the given name.""" assert name in self.physical_to_lines or name in self.physical_to_triangles, "Physical group not in mesh, so cannot extract" if name in self.physical_to_lines: elements = self.lines physical = self.physical_to_lines elif name in self.physical_to_triangles: elements = self.triangles physical = self.physical_to_triangles elements_indices = np.unique(physical[name]) elements = elements[elements_indices] points_mask = np.full(len(self.points), False) points_mask[elements] = True points = self.points[points_mask] new_index = np.cumsum(points_mask) - 1 elements = new_index[elements] physical_to_elements = {name:np.arange(len(elements))} if name in self.physical_to_lines: return Mesh(points=points, lines=elements, physical_to_lines=physical_to_elements) elif name in self.physical_to_triangles: return Mesh(points=points, triangles=elements, physical_to_triangles=physical_to_elements) @staticmethod def read_file(filename, name=None): """Create a mesh from a given file. All formats supported by meshio are accepted. Parameters ------------------------------ filename: str Path of the file to convert to Mesh name: str (optional) name to assign to all elements readed Returns ------------------------------- Mesh""" meshio_obj = meshio.read(filename) mesh = Mesh.from_meshio(meshio_obj) if name is not None: mesh.physical_to_lines[name] = np.arange(len(mesh.lines)) mesh.physical_to_triangles[name] = np.arange(len(mesh.triangles)) return mesh def write_file(self, filename): """Write a mesh to a given file. The format is determined from the file extension. All formats supported by meshio are supported. Parameters ---------------------------------- filename: str The name of the file to write the mesh to.""" meshio_obj = self.to_meshio() meshio_obj.write(filename) def write(self, filename): self.write_file(filename) def to_meshio(self): """Convert the Mesh to a meshio object. Returns ------------------------------------ meshio.Mesh""" to_write = [] if len(self.lines): line_type = 'line' if self.lines.shape[1] == 2 else 'line4' to_write.append( (line_type, self.lines) ) if len(self.triangles): triangle_type = 'triangle' if self.triangles.shape[1] == 3 else 'triangle6' to_write.append( (triangle_type, self.triangles) ) return meshio.Mesh(self.points, to_write) @staticmethod def from_meshio(mesh: meshio.Mesh): """Create a Traceon mesh from a meshio.Mesh object. Parameters -------------------------- mesh: meshio.Mesh The mesh to convert to a Traceon mesh Returns ------------------------- Mesh""" def extract(type_): elements = mesh.cells_dict[type_] physical = {k:v[type_] for k,v in mesh.cell_sets_dict.items() if type_ in v} return elements, physical lines, physical_lines = [], {} triangles, physical_triangles = [], {} if 'line' in mesh.cells_dict: lines, physical_lines = extract('line') elif 'line4' in mesh.cells_dict: lines, physical_lines = extract('line4') if 'triangle' in mesh.cells_dict: triangles, physical_triangles = extract('triangle') elif 'triangle6' in mesh.cells_dict: triangles, physical_triangles = extract('triangle6') return Mesh(points=mesh.points, lines=lines, physical_to_lines=physical_lines, triangles=triangles, physical_to_triangles=physical_triangles) def is_3d(self): """Check if the mesh is three dimensional by checking whether any z coordinate is non-zero. Returns ---------------- bool Whether the mesh is three dimensional""" return np.any(self.points[:, 1] != 0.) def is_2d(self): """Check if the mesh is two dimensional, by checking that all z coordinates are zero. Returns ---------------- bool Whether the mesh is two dimensional""" return np.all(self.points[:, 1] == 0.) def flip_normals(self): """Flip the normals in the mesh by inverting the 'orientation' of the elements. Returns ---------------------------- Mesh""" lines = self.lines triangles = self.triangles # Flip the orientation of the lines if lines.shape[1] == 4: p0, p1, p2, p3 = lines.T lines = np.array([p1, p0, p3, p2]).T else: p0, p1 = lines.T lines = np.array([p1, p0]).T # Flip the orientation of the triangles if triangles.shape[1] == 6: p0, p1, p2, p3, p4, p5 = triangles.T triangles = np.array([p0, p2, p1, p5, p4, p3]).T else: p0, p1, p2 = triangles.T triangles = np.array([p0, p2, p1]).T return Mesh(self.points, lines, triangles, physical_to_lines=self.physical_to_lines, physical_to_triangles=self.physical_to_triangles) def remove_lines(self): """Remove all the lines from the mesh. Returns ----------------------------- Mesh""" return Mesh(self.points, triangles=self.triangles, physical_to_triangles=self.physical_to_triangles) def remove_triangles(self): """Remove all triangles from the mesh. Returns ------------------------------------- Mesh""" return Mesh(self.points, lines=self.lines, physical_to_lines=self.physical_to_lines) def get_electrodes(self): """Get the names of all the named groups (i.e. electrodes) in the mesh Returns --------- str iterable Names """ return list(self.physical_to_lines.keys()) + list(self.physical_to_triangles.keys()) @staticmethod def _lines_to_higher_order(points, elements): N_elements = len(elements) N_points = len(points) v0, v1 = elements.T p2 = points[v0] + (points[v1] - points[v0]) * 1/3 p3 = points[v0] + (points[v1] - points[v0]) * 2/3 assert all(p.shape == (N_elements, points.shape[1]) for p in [p2, p3]) points = np.concatenate( (points, p2, p3), axis=0) elements = np.array([ elements[:, 0], elements[:, 1], np.arange(N_points, N_points + N_elements, dtype=np.uint64), np.arange(N_points + N_elements, N_points + 2*N_elements, dtype=np.uint64)]).T assert np.allclose(p2, points[elements[:, 2]]) and np.allclose(p3, points[elements[:, 3]]) return points, elements def _to_higher_order_mesh(self): # The matrix solver currently only works with higher order meshes. # We can however convert a simple mesh easily to a higher order mesh, and solve that. points, lines, triangles = self.points, self.lines, self.triangles if not len(lines): lines = np.empty( (0, 4), dtype=np.float64) elif len(lines) and lines.shape[1] == 2: points, lines = Mesh._lines_to_higher_order(points, lines) assert lines.shape == (len(lines), 4) return Mesh(points=points, lines=lines, physical_to_lines=self.physical_to_lines, triangles=triangles, physical_to_triangles=self.physical_to_triangles) def __str__(self): physical_lines = ', '.join(self.physical_to_lines.keys()) physical_lines_nums = ', '.join([str(len(self.physical_to_lines[n])) for n in self.physical_to_lines.keys()]) physical_triangles = ', '.join(self.physical_to_triangles.keys()) physical_triangles_nums = ', '.join([str(len(self.physical_to_triangles[n])) for n in self.physical_to_triangles.keys()]) return f'<Traceon Mesh,\n' \ f'\tNumber of points: {len(self.points)}\n' \ f'\tNumber of lines: {len(self.lines)}\n' \ f'\tNumber of triangles: {len(self.triangles)}\n' \ f'\tPhysical lines: {physical_lines}\n' \ f'\tElements in physical line groups: {physical_lines_nums}\n' \ f'\tPhysical triangles: {physical_triangles}\n' \ f'\tElements in physical triangle groups: {physical_triangles_nums}>' def _ensure_normal_orientation_triangles(self, electrode, outwards): assert electrode in self.physical_to_triangles, "electrode should be part of mesh" triangle_indices = self.physical_to_triangles[electrode] electrode_triangles = self.triangles[triangle_indices] if not len(electrode_triangles): return connected_indices = _get_connected_elements(electrode_triangles) for indices in connected_indices: connected_triangles = electrode_triangles[indices] _ensure_triangle_orientation(connected_triangles, self.points, outwards) electrode_triangles[indices] = connected_triangles self.triangles[triangle_indices] = electrode_triangles def _ensure_normal_orientation_lines(self, electrode, outwards): assert electrode in self.physical_to_lines, "electrode should be part of mesh" line_indices = self.physical_to_lines[electrode] electrode_lines = self.lines[line_indices] if not len(electrode_lines): return connected_indices = _get_connected_elements(electrode_lines) for indices in connected_indices: connected_lines = electrode_lines[indices] _ensure_line_orientation(connected_lines, self.points, outwards) electrode_lines[indices] = connected_lines self.lines[line_indices] = electrode_lines def ensure_outward_normals(self, electrode): if electrode in self.physical_to_triangles: self._ensure_normal_orientation_triangles(electrode, True) if electrode in self.physical_to_lines: self._ensure_normal_orientation_lines(electrode, True) def ensure_inward_normals(self, electrode): if electrode in self.physical_to_triangles: self._ensure_normal_orientation_triangles(electrode, False) if electrode in self.physical_to_lines: self._ensure_normal_orientation_lines(electrode, False)
Mesh containing lines and triangles. Groups of lines or triangles can be named. These names are later used to apply the correct excitation. Line elements can be curved (or 'higher order'), in which case they are represented by four points per element. Note that
Mesh
is a subclass ofGeometricObject
, and therefore can be easily moved and rotated.Ancestors
- traceon.util.Saveable
- GeometricObject
- abc.ABC
Static methods
def from_meshio(mesh: meshio._mesh.Mesh)
-
Expand source code
@staticmethod def from_meshio(mesh: meshio.Mesh): """Create a Traceon mesh from a meshio.Mesh object. Parameters -------------------------- mesh: meshio.Mesh The mesh to convert to a Traceon mesh Returns ------------------------- Mesh""" def extract(type_): elements = mesh.cells_dict[type_] physical = {k:v[type_] for k,v in mesh.cell_sets_dict.items() if type_ in v} return elements, physical lines, physical_lines = [], {} triangles, physical_triangles = [], {} if 'line' in mesh.cells_dict: lines, physical_lines = extract('line') elif 'line4' in mesh.cells_dict: lines, physical_lines = extract('line4') if 'triangle' in mesh.cells_dict: triangles, physical_triangles = extract('triangle') elif 'triangle6' in mesh.cells_dict: triangles, physical_triangles = extract('triangle6') return Mesh(points=mesh.points, lines=lines, physical_to_lines=physical_lines, triangles=triangles, physical_to_triangles=physical_triangles)
Create a Traceon mesh from a meshio.Mesh object.
Parameters
mesh
:meshio.Mesh
- The mesh to convert to a Traceon mesh
Returns
def read_file(filename, name=None)
-
Expand source code
@staticmethod def read_file(filename, name=None): """Create a mesh from a given file. All formats supported by meshio are accepted. Parameters ------------------------------ filename: str Path of the file to convert to Mesh name: str (optional) name to assign to all elements readed Returns ------------------------------- Mesh""" meshio_obj = meshio.read(filename) mesh = Mesh.from_meshio(meshio_obj) if name is not None: mesh.physical_to_lines[name] = np.arange(len(mesh.lines)) mesh.physical_to_triangles[name] = np.arange(len(mesh.triangles)) return mesh
Create a mesh from a given file. All formats supported by meshio are accepted.
Parameters
filename
:str
- Path of the file to convert to Mesh
name
:str
- (optional) name to assign to all elements readed
Returns
Methods
def __add__(self, other)
-
Expand source code
def __add__(self, other): """Add meshes together, using the + operator (mesh1 + mesh2). Returns ------------------------------ Mesh A new mesh consisting of the elements of the added meshes""" if not isinstance(other, Mesh): return NotImplemented N_points = len(self.points) N_lines = len(self.lines) N_triangles = len(self.triangles) points = _concat_arrays(self.points, other.points) lines = _concat_arrays(self.lines, other.lines+N_points) triangles = _concat_arrays(self.triangles, other.triangles+N_points) other_physical_to_lines = {k:(v+N_lines) for k, v in other.physical_to_lines.items()} other_physical_to_triangles = {k:(v+N_triangles) for k, v in other.physical_to_triangles.items()} physical_lines = Mesh._merge_dicts(self.physical_to_lines, other_physical_to_lines) physical_triangles = Mesh._merge_dicts(self.physical_to_triangles, other_physical_to_triangles) return Mesh(points=points, lines=lines, triangles=triangles, physical_to_lines=physical_lines, physical_to_triangles=physical_triangles)
Add meshes together, using the + operator (mesh1 + mesh2).
Returns
Mesh
A new mesh consisting
ofthe elements
ofthe added meshes
def ensure_inward_normals(self, electrode)
-
Expand source code
def ensure_inward_normals(self, electrode): if electrode in self.physical_to_triangles: self._ensure_normal_orientation_triangles(electrode, False) if electrode in self.physical_to_lines: self._ensure_normal_orientation_lines(electrode, False)
def ensure_outward_normals(self, electrode)
-
Expand source code
def ensure_outward_normals(self, electrode): if electrode in self.physical_to_triangles: self._ensure_normal_orientation_triangles(electrode, True) if electrode in self.physical_to_lines: self._ensure_normal_orientation_lines(electrode, True)
def extract_physical_group(self, name)
-
Expand source code
def extract_physical_group(self, name): """Extract a named group from the mesh. Parameters --------------------------- name: str Name of the group of elements Returns -------------------------- Mesh Subset of the mesh consisting only of the elements with the given name.""" assert name in self.physical_to_lines or name in self.physical_to_triangles, "Physical group not in mesh, so cannot extract" if name in self.physical_to_lines: elements = self.lines physical = self.physical_to_lines elif name in self.physical_to_triangles: elements = self.triangles physical = self.physical_to_triangles elements_indices = np.unique(physical[name]) elements = elements[elements_indices] points_mask = np.full(len(self.points), False) points_mask[elements] = True points = self.points[points_mask] new_index = np.cumsum(points_mask) - 1 elements = new_index[elements] physical_to_elements = {name:np.arange(len(elements))} if name in self.physical_to_lines: return Mesh(points=points, lines=elements, physical_to_lines=physical_to_elements) elif name in self.physical_to_triangles: return Mesh(points=points, triangles=elements, physical_to_triangles=physical_to_elements)
Extract a named group from the mesh.
Parameters
name
:str
- Name of the group of elements
Returns
Subset of the mesh consisting only of the elements with the given name.
def flip_normals(self)
-
Expand source code
def flip_normals(self): """Flip the normals in the mesh by inverting the 'orientation' of the elements. Returns ---------------------------- Mesh""" lines = self.lines triangles = self.triangles # Flip the orientation of the lines if lines.shape[1] == 4: p0, p1, p2, p3 = lines.T lines = np.array([p1, p0, p3, p2]).T else: p0, p1 = lines.T lines = np.array([p1, p0]).T # Flip the orientation of the triangles if triangles.shape[1] == 6: p0, p1, p2, p3, p4, p5 = triangles.T triangles = np.array([p0, p2, p1, p5, p4, p3]).T else: p0, p1, p2 = triangles.T triangles = np.array([p0, p2, p1]).T return Mesh(self.points, lines, triangles, physical_to_lines=self.physical_to_lines, physical_to_triangles=self.physical_to_triangles)
def get_electrodes(self)
-
Expand source code
def get_electrodes(self): """Get the names of all the named groups (i.e. electrodes) in the mesh Returns --------- str iterable Names """ return list(self.physical_to_lines.keys()) + list(self.physical_to_triangles.keys())
Get the names of all the named groups (i.e. electrodes) in the mesh
Returns
str iterable
Names
def is_2d(self)
-
Expand source code
def is_2d(self): """Check if the mesh is two dimensional, by checking that all z coordinates are zero. Returns ---------------- bool Whether the mesh is two dimensional""" return np.all(self.points[:, 1] == 0.)
Check if the mesh is two dimensional, by checking that all z coordinates are zero.
Returns
bool
Whether the mesh is two dimensional
def is_3d(self)
-
Expand source code
def is_3d(self): """Check if the mesh is three dimensional by checking whether any z coordinate is non-zero. Returns ---------------- bool Whether the mesh is three dimensional""" return np.any(self.points[:, 1] != 0.)
Check if the mesh is three dimensional by checking whether any z coordinate is non-zero.
Returns
bool
Whether the mesh is three dimensional
def is_higher_order(self)
-
Expand source code
def is_higher_order(self): """Whether the mesh contains higher order elements. Returns ---------------------------- bool""" return isinstance(self.lines, np.ndarray) and len(self.lines.shape) == 2 and self.lines.shape[1] == 4
Whether the mesh contains higher order elements.
Returns
bool
def map_points(self, fun)
-
Expand source code
def map_points(self, fun): """See `GeometricObject` """ new_points = np.empty_like(self.points) for i in range(len(self.points)): new_points[i] = fun(self.points[i]) assert new_points.shape == self.points.shape and new_points.dtype == self.points.dtype return Mesh(new_points, self.lines, self.triangles, self.physical_to_lines, self.physical_to_triangles)
See
GeometricObject
def remove_lines(self)
-
Expand source code
def remove_lines(self): """Remove all the lines from the mesh. Returns ----------------------------- Mesh""" return Mesh(self.points, triangles=self.triangles, physical_to_triangles=self.physical_to_triangles)
def remove_triangles(self)
-
Expand source code
def remove_triangles(self): """Remove all triangles from the mesh. Returns ------------------------------------- Mesh""" return Mesh(self.points, lines=self.lines, physical_to_lines=self.physical_to_lines)
def to_meshio(self)
-
Expand source code
def to_meshio(self): """Convert the Mesh to a meshio object. Returns ------------------------------------ meshio.Mesh""" to_write = [] if len(self.lines): line_type = 'line' if self.lines.shape[1] == 2 else 'line4' to_write.append( (line_type, self.lines) ) if len(self.triangles): triangle_type = 'triangle' if self.triangles.shape[1] == 3 else 'triangle6' to_write.append( (triangle_type, self.triangles) ) return meshio.Mesh(self.points, to_write)
Convert the Mesh to a meshio object.
Returns
meshio.Mesh
def write(self, filename)
-
Expand source code
def write(self, filename): self.write_file(filename)
Write a mesh to a file. The pickle module will be used to save the Geometry object.
Args
filename
- name of the file
def write_file(self, filename)
-
Expand source code
def write_file(self, filename): """Write a mesh to a given file. The format is determined from the file extension. All formats supported by meshio are supported. Parameters ---------------------------------- filename: str The name of the file to write the mesh to.""" meshio_obj = self.to_meshio() meshio_obj.write(filename)
Write a mesh to a given file. The format is determined from the file extension. All formats supported by meshio are supported.
Parameters
filename
:str
- The name of the file to write the mesh to.
Inherited members