Module traceon.geometry
The geometry module allows the creation of general meshes in 2D and 3D. The builtin mesher uses so called parametric meshes, meaning that for any mesh we construct a mathematical formula mapping to points on the mesh. This makes it easy to generate structured (or transfinite) meshes. These meshes usually help the mesh to converge to the right answer faster, since the symmetries of the mesh (radial, multipole, etc.) are better represented.
The parametric mesher also has downsides, since it's for example harder to generate meshes with lots of holes in them (the 'cut' operation is not supported). For these cases, Traceon makes it easy to import meshes generated by other programs (e.g. GMSH or Comsol). Traceon can import meshio meshes or any file format supported by meshio.
Classes
class Path (fun, path_length, breakpoints=[], name=None)
-
Expand source code
class Path(GeometricObject): """A path is a mapping from a number in the range [0, path_length] to a three dimensional point. Note that `Path` is a subclass of `traceon.mesher.GeometricObject`, and therefore can be easily moved and rotated.""" def __init__(self, fun, path_length, breakpoints=[], name=None): # Assumption: fun takes in p, the path length # and returns the point on the path self.fun = fun self.path_length = path_length self.breakpoints = breakpoints self.name = name @staticmethod def from_irregular_function(to_point, N=100, breakpoints=[]): """Construct a path from a function that is of the form u -> point, where 0 <= u <= 1. The length of the path is determined by integration. Parameters --------------------------------- to_point: callable A function accepting a number in the range [0, 1] and returns a the dimensional point. N: int Number of samples to use in the cubic spline interpolation. breakpoints: float iterable Points (0 <= u <= 1) on the path where the function is non-differentiable. These points are always included in the resulting mesh. Returns --------------------------------- Path""" # path length = integrate |f'(x)| fun = lambda u: np.array(to_point(u)) u = np.linspace(0, 1, N) samples = CubicSpline(u, [fun(u_) for u_ in u]) derivatives = samples.derivative()(u) norm_derivatives = np.linalg.norm(derivatives, axis=1) path_lengths = CubicSpline(u, norm_derivatives).antiderivative()(u) interpolation = CubicSpline(path_lengths, u) # Path length to [0,1] path_length = path_lengths[-1] return Path(lambda pl: fun(interpolation(pl)), path_length, breakpoints=[b*path_length for b in breakpoints]) @staticmethod def spline_through_points(points, N=100): """Construct a path by fitting a cubic spline through the given points. Parameters ------------------------- points: (N, 3) ndarray of float Three dimensional points through which the spline is fitted. Returns ------------------------- Path""" x = np.linspace(0, 1, len(points)) interp = CubicSpline(x, points) return Path.from_irregular_function(interp, N=N) def average(self, fun): """Average a function along the path, by integrating 1/l * fun(path(l)) with 0 <= l <= path length. Parameters -------------------------- fun: callable (3,) -> float A function taking a three dimensional point and returning a float. Returns ------------------------- float The average value of the function along the point.""" return quad(lambda s: fun(self(s)), 0, self.path_length, points=self.breakpoints)[0]/self.path_length def map_points(self, fun): """Return a new function by mapping a function over points along the path (see `traceon.mesher.GeometricObject`). The path length is assumed to stay the same after this operation. Parameters ---------------------------- fun: callable (3,) -> (3,) Function taking three dimensional points and returning three dimensional points. Returns --------------------------- Path""" return Path(lambda u: fun(self(u)), self.path_length, self.breakpoints, name=self.name) def __call__(self, t): """Evaluate a point along the path. Parameters ------------------------ t: float The length along the path. Returns ------------------------ (3,) float Three dimensional point.""" return self.fun(t) def is_closed(self): """Determine whether the path is closed, by comparing the starting and endpoint. Returns ---------------------- bool: True if the path is closed, False otherwise.""" return _points_close(self.starting_point(), self.endpoint()) def add_phase(self, l): """Add a phase to a closed path. A path is closed when the starting point is equal to the end point. A phase of length l means that the path starts 'further down' the closed path. Parameters -------------------- l: float The phase (expressed as a path length). The resulting path starts l distance along the original path. Returns -------------------- Path""" assert self.is_closed() def fun(u): return self( (l + u) % self.path_length ) return Path(fun, self.path_length, sorted([(b-l)%self.path_length for b in self.breakpoints + [0.]]), name=self.name) def __rshift__(self, other): """Combine two paths to create a single path. The endpoint of the first path needs to match the starting point of the second path. This common point is marked as a breakpoint and always included in the mesh. To use this function use the right shift operator (p1 >> p2). Parameters ----------------------- other: Path The second path, to extend the current path. Returns ----------------------- Path""" assert isinstance(other, Path), "Exteding path with object that is not actually a Path" assert _points_close(self.endpoint(), other.starting_point()) total = self.path_length + other.path_length def f(t): assert 0 <= t <= total if t <= self.path_length: return self(t) else: return other(t - self.path_length) return Path(f, total, self.breakpoints + [self.path_length] + other.breakpoints, name=self.name) def starting_point(self): """Returns the starting point of the path. Returns --------------------- (3,) float The starting point of the path.""" return self(0.) def middle_point(self): """Returns the midpoint of the path (in terms of length along the path.) Returns ---------------------- (3,) float The point at the middle of the path.""" return self(self.path_length/2) def endpoint(self): """Returns the endpoint of the path. Returns ------------------------ (3,) float The endpoint of the path.""" return self(self.path_length) def line_to(self, point): """Extend the current path by a line from the current endpoint to the given point. The given point is marked a breakpoint. Parameters ---------------------- point: (3,) float The new endpoint. Returns --------------------- Path""" warnings.warn("line_to() is deprecated and will be removed in version 0.8.0." "Use extend_with_line() instead.", DeprecationWarning, stacklevel=2) point = np.array(point) assert point.shape == (3,), "Please supply a three dimensional point to .line_to(...)" l = Path.line(self.endpoint(), point) return self >> l def extend_with_line(self, point): """Extend the current path by a line from the current endpoint to the given point. The given point is marked a breakpoint. Parameters ---------------------- point: (3,) float The new endpoint. Returns --------------------- Path""" point = np.array(point) assert point.shape == (3,), "Please supply a three dimensional point to .extend_with_line(...)" l = Path.line(self.endpoint(), point) return self >> l @staticmethod def circle_xz(x0, z0, radius, angle=2*pi): """Returns (part of) a circle in the XZ plane around the x-axis. Starting on the positive x-axis. Parameters -------------------------------- x0: float x-coordinate of the center of the circle z0: float z-coordinate of the center of the circle radius: float radius of the circle angle: float The circumference of the circle in radians. The default of 2*pi gives a full circle. Returns --------------------------------- Path""" def f(u): theta = u / radius return np.array([radius*cos(theta), 0., radius*sin(theta)]) return Path(f, angle*radius).move(dx=x0, dz=z0) @staticmethod def circle_yz(y0, z0, radius, angle=2*pi): """Returns (part of) a circle in the YZ plane around the x-axis. Starting on the positive y-axis. Parameters -------------------------------- y0: float x-coordinate of the center of the circle z0: float z-coordinate of the center of the circle radius: float radius of the circle angle: float The circumference of the circle in radians. The default of 2*pi gives a full circle. Returns --------------------------------- Path""" def f(u): theta = u / radius return np.array([0., radius*cos(theta), radius*sin(theta)]) return Path(f, angle*radius).move(dy=y0, dz=z0) @staticmethod def circle_xy(x0, y0, radius, angle=2*pi): """Returns (part of) a circle in the XY plane around the z-axis. Starting on the positive X-axis. Parameters -------------------------------- x0: float x-coordinate of the center of the circle y0: float y-coordinate of the center of the circle radius: float radius of the circle angle: float The circumference of the circle in radians. The default of 2*pi gives a full circle. Returns --------------------------------- Path""" def f(u): theta = u / radius return np.array([radius*cos(theta), radius*sin(theta), 0.]) return Path(f, angle*radius).move(dx=x0, dy=y0) def arc_to(self, center, end, reverse=False): """Extend the current path using an arc. Parameters ---------------------------- center: (3,) float The center point of the arc. end: (3,) float The endpoint of the arc, shoud lie on a circle determined by the given centerpoint and the current endpoint. Returns ----------------------------- Path""" warnings.warn("arc_to() is deprecated and will be removed in version 0.8.0." "Use extend_with_arc() instead.", DeprecationWarning, stacklevel=2) start = self.endpoint() return self >> Path.arc(center, start, end, reverse=reverse) def extend_with_arc(self, center, end, reverse=False): """Extend the current path using an arc. Parameters ---------------------------- center: (3,) float The center point of the arc. end: (3,) float The endpoint of the arc, shoud lie on a circle determined by the given centerpoint and the current endpoint. Returns ----------------------------- Path""" start = self.endpoint() return self >> Path.arc(center, start, end, reverse=reverse) @staticmethod def arc(center, start, end, reverse=False): """Return an arc by specifying the center, start and end point. Parameters ---------------------------- center: (3,) float The center point of the arc. start: (3,) float The start point of the arc. end: (3,) float The endpoint of the arc. Returns ---------------------------- Path""" start_arr, center_arr, end_arr = np.array(start), np.array(center), np.array(end) x_unit = start_arr - center_arr x_unit /= np.linalg.norm(x_unit) vector = end_arr - center_arr y_unit = vector - np.dot(vector, x_unit) * x_unit y_unit /= np.linalg.norm(y_unit) radius = np.linalg.norm(start_arr - center_arr) theta_max = atan2(np.dot(vector, y_unit), np.dot(vector, x_unit)) if reverse: theta_max = theta_max - 2*pi path_length = abs(theta_max * radius) def f(l): theta = l/path_length * theta_max return center + radius*cos(theta)*x_unit + radius*sin(theta)*y_unit return Path(f, path_length) def revolve_x(self, angle=2*pi): """Create a surface by revolving the path anti-clockwise around the x-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. Returns ----------------------- Surface""" r_avg = self.average(lambda p: sqrt(p[1]**2 + p[2]**2)) length2 = 2*pi*r_avg def f(u, v): p = self(u) theta = atan2(p[2], p[1]) r = sqrt(p[1]**2 + p[2]**2) return np.array([p[0], r*cos(theta + v/length2*angle), r*sin(theta + v/length2*angle)]) return Surface(f, self.path_length, length2, self.breakpoints, name=self.name) def revolve_y(self, angle=2*pi): """Create a surface by revolving the path anti-clockwise around the y-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. Returns ----------------------- Surface""" r_avg = self.average(lambda p: sqrt(p[0]**2 + p[2]**2)) length2 = 2*pi*r_avg def f(u, v): p = self(u) theta = atan2(p[2], p[0]) r = sqrt(p[0]*p[0] + p[2]*p[2]) return np.array([r*cos(theta + v/length2*angle), p[1], r*sin(theta + v/length2*angle)]) return Surface(f, self.path_length, length2, self.breakpoints, name=self.name) def revolve_z(self, angle=2*pi): """Create a surface by revolving the path anti-clockwise around the z-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. Returns ----------------------- Surface""" r_avg = self.average(lambda p: sqrt(p[0]**2 + p[1]**2)) length2 = 2*pi*r_avg def f(u, v): p = self(u) theta = atan2(p[1], p[0]) r = sqrt(p[0]*p[0] + p[1]*p[1]) return np.array([r*cos(theta + v/length2*angle), r*sin(theta + v/length2*angle), p[2]]) return Surface(f, self.path_length, length2, self.breakpoints, name=self.name) def extrude(self, vector): """Create a surface by extruding the path along a vector. The vector gives both the length and the direction of the extrusion. Parameters ------------------------- vector: (3,) float The direction and length (norm of the vector) to extrude by. Returns ------------------------- Surface""" vector = np.array(vector) length = np.linalg.norm(vector) def f(u, v): return self(u) + v/length*vector return Surface(f, self.path_length, length, self.breakpoints, name=self.name) def extrude_by_path(self, p2): """Create a surface by extruding the path along a second path. The second path does not need to start along the first path. Imagine the surface created by moving the first path along the second path. Parameters ------------------------- p2: Path The (second) path defining the extrusion. Returns ------------------------ Surface""" p0 = p2.starting_point() def f(u, v): return self(u) + p2(v) - p0 return Surface(f, self.path_length, p2.path_length, self.breakpoints, p2.breakpoints, name=self.name) def close(self): """Close the path, by making a straight line to the starting point. Returns ------------------- Path""" return self.extend_with_line(self.starting_point()) @staticmethod def ellipse(major, minor): """Create a path along the outline of an ellipse. The ellipse lies in the XY plane, and the path starts on the positive x-axis. Parameters --------------------------- major: float The major axis of the ellipse (lies along the x-axis). minor: float The minor axis of the ellipse (lies along the y-axis). Returns --------------------------- Path""" # Crazy enough there is no closed formula # to go from path length to a point on the ellipse. # So we have to use `from_irregular_function` def f(u): return np.array([major*cos(2*pi*u), minor*sin(2*pi*u), 0.]) return Path.from_irregular_function(f) @staticmethod def line(from_, to): """Create a straight line between two points. Parameters ------------------------------ from_: (3,) float The starting point of the path. to: (3,) float The endpoint of the path. Returns --------------------------- Path""" from_, to = np.array(from_), np.array(to) length = np.linalg.norm(from_ - to) return Path(lambda pl: (1-pl/length)*from_ + pl/length*to, length) def cut(self, length): """Cut the path in two at a specific length along the path. Parameters -------------------------------------- length: float The length along the path at which to cut. Returns ------------------------------------- (Path, Path) A tuple containing two paths. The first path contains the path upto length, while the second path contains the rest.""" return (Path(self.fun, length, [b for b in self.breakpoints if b <= length], name=self.name), Path(lambda l: self.fun(l + length), self.path_length - length, [b - length for b in self.breakpoints if b >= length], name=self.name)) @staticmethod def rectangle_xz(xmin, xmax, zmin, zmax): """Create a rectangle in the XZ plane. The path starts at (xmin, 0, zmin), and is counter clockwise around the y-axis. Parameters ------------------------ xmin: float Minimum x-coordinate of the corner points. xmax: float Maximum x-coordinate of the corner points. zmin: float Minimum z-coordinate of the corner points. zmax: float Maximum z-coordinate of the corner points. Returns ----------------------- Path""" return Path.line([xmin, 0., zmin], [xmax, 0, zmin]) \ .extend_with_line([xmax, 0, zmax]).extend_with_line([xmin, 0., zmax]).close() @staticmethod def rectangle_yz(ymin, ymax, zmin, zmax): """Create a rectangle in the YZ plane. The path starts at (0, ymin, zmin), and is counter clockwise around the x-axis. Parameters ------------------------ ymin: float Minimum y-coordinate of the corner points. ymax: float Maximum y-coordinate of the corner points. zmin: float Minimum z-coordinate of the corner points. zmax: float Maximum z-coordinate of the corner points. Returns ----------------------- Path""" return Path.line([0., ymin, zmin], [0, ymin, zmax]) \ .extend_with_line([0., ymax, zmax]).extend_with_line([0., ymax, zmin]).close() @staticmethod def rectangle_xy(xmin, xmax, ymin, ymax): """Create a rectangle in the XY plane. The path starts at (xmin, ymin, 0), and is counter clockwise around the z-axis. Parameters ------------------------ xmin: float Minimum x-coordinate of the corner points. xmax: float Maximum x-coordinate of the corner points. ymin: float Minimum y-coordinate of the corner points. ymax: float Maximum y-coordinate of the corner points. Returns ----------------------- Path""" return Path.line([xmin, ymin, 0.], [xmin, ymax, 0.]) \ .extend_with_line([xmax, ymax, 0.]).extend_with_line([xmax, ymin, 0.]).close() @staticmethod def aperture(height, radius, extent, z=0.): """Create an 'aperture'. Note that in a radially symmetric geometry an aperture is basically a rectangle with the right side 'open'. Revolving this path around the z-axis would generate a cylindircal hole in the center. This is the most basic model of an aperture. Parameters ------------------------ height: float The height of the aperture radius: float The radius of the aperture hole (distance to the z-axis) extent: float The maximum x value z: float The z-coordinate of the center of the aperture Returns ------------------------ Path""" return Path.line([extent, 0., -height/2], [radius, 0., -height/2])\ .extend_with_line([radius, 0., height/2]).extend_with_line([extent, 0., height/2]).move(dz=z) @staticmethod def polar_arc(radius, angle, start, direction, plane_normal=[0,1,0]): """Return an arc specified by polar coordinates. The arc lies in a plane defined by the provided normal vector and curves from the start point in the specified direction counterclockwise around the normal. Parameters --------------------------- radius : float The radius of the arc. angle : float The angle subtended by the arc (in radians) start: (3,) float The start point of the arc plane_normal : (3,) float The normal vector of the plane containing the arc direction : (3,) float A tangent of the arc at the starting point. Must lie in the specified plane. Does not need to be normalized. Returns ---------------------------- Path""" start = np.array(start, dtype=float) plane_normal = np.array(plane_normal, dtype=float) direction = np.array(direction, dtype=float) direction_unit = direction / np.linalg.norm(direction) plane_normal_unit = plane_normal / np.linalg.norm(plane_normal) if not np.isclose(np.dot(direction_unit, plane_normal_unit), 0., atol=1e-7): corrected_direction = direction - np.dot(direction, plane_normal_unit) * plane_normal_unit raise AssertionError( f"The provided direction {direction} does not lie in the specified plane. \n" f"The closed valid direction is {np.round(corrected_direction, 10)}.") if angle < 0: direction, angle = -direction, -angle center = start - radius * np.cross(direction, plane_normal) center_to_start = start - center def f(l): theta = l/radius return center + np.cos(theta) * center_to_start + np.sin(theta)*np.cross(plane_normal, center_to_start) return Path(f, radius*angle) def extend_with_polar_arc(self, radius, angle, plane_normal=[0, 1, 0]): """Extend the current path by a smooth arc using polar coordinates. The arc is defined by a specified radius and angle and rotates counterclockwise around around the normal that defines the arcing plane. Parameters --------------------------- radius : float The radius of the arc angle : float The angle subtended by the arc (in radians) plane_normal : (3,) float The normal vector of the plane containing the arc Returns ---------------------------- Path""" plane_normal = np.array(plane_normal, dtype=float) start_point = self.endpoint() direction = self.velocity_vector(self.path_length) plane_normal_unit = plane_normal / np.linalg.norm(plane_normal) direction_unit = direction / np.linalg.norm(direction) if not np.isclose(np.dot(plane_normal_unit, direction_unit), 0,atol=1e-7): corrected_normal = plane_normal - np.dot(direction_unit, plane_normal) * direction_unit raise AssertionError( f"The provided plane normal {plane_normal} is not orthogonal to the direction {direction} \n" f"of the path at the endpoint so no smooth arc can be made. The closest valid normal is " f"{np.round(corrected_normal, 10)}.") return self >> Path.polar_arc(radius, angle, start_point, direction, plane_normal) def reverse(self): """Generate a reversed version of the current path. The reversed path is created by inverting the traversal direction, such that the start becomes the end and vice versa. Returns ---------------------------- Path""" return Path(lambda t: self(self.path_length-t), self.path_length, [self.path_length - b for b in self.breakpoints], self.name) def velocity_vector(self, t): """Calculate the velocity (tangent) vector at a specific point on the path using cubic spline interpolation. Parameters ---------------------------- t : float The point on the path at which to calculate the velocity num_splines : int The number of samples used for cubic spline interpolation Returns ---------------------------- (3,) np.ndarray of float""" samples = np.linspace(t - self.path_length*1e-3, t + self.path_length*1e-3, 7) # Odd number to include t samples_on_path = [s for s in samples if 0 <= s <= self.path_length] assert len(samples_on_path), "Please supply a point that lies on the path" return CubicSpline(samples_on_path, [self(s) for s in samples_on_path])(t, nu=1) def __add__(self, other): """Add two paths to create a PathCollection. Note that a PathCollection supports a subset of the methods of Path (for example, movement, rotation and meshing). Use the + operator to combine paths into a path collection: path1 + path2 + path3. Returns ------------------------- PathCollection""" if isinstance(other, Path): return PathCollection([self, other]) if isinstance(other, PathCollection): return PathCollection([self] + [other.paths]) return NotImplemented def mesh(self, mesh_size=None, mesh_size_factor=None, higher_order=False, name=None, ensure_outward_normals=True): """Mesh the path, so it can be used in the BEM solver. The result of meshing a path are (possibly curved) line elements. Parameters -------------------------- mesh_size: float Determines amount of elements in the mesh. A smaller mesh size leads to more elements. mesh_size_factor: float Alternative way to specify the mesh size, which scales with the dimensions of the geometry, and therefore more easily translates between different geometries. higher_order: bool Whether to generate a higher order mesh. A higher order produces curved line elements (determined by 4 points on each curved element). The BEM solver supports higher order elements in radial symmetric geometries only. name: str Assign this name to the mesh, instead of the name value assinged to Surface.name Returns ---------------------------- `traceon.mesher.Mesh`""" u = discretize_path(self.path_length, self.breakpoints, mesh_size, mesh_size_factor, N_factor=3 if higher_order else 1) N = len(u) points = np.zeros( (N, 3) ) for i in range(N): points[i] = self(u[i]) if not higher_order: lines = np.array([np.arange(N-1), np.arange(1, N)]).T else: assert N % 3 == 1 r = np.arange(N) p0 = r[0:-1:3] p1 = r[3::3] p2 = r[1::3] p3 = r[2::3] lines = np.array([p0, p1, p2, p3]).T assert lines.dtype == np.int64 or lines.dtype == np.int32 name = self.name if name is None else name if name is not None: physical_to_lines = {name:np.arange(len(lines))} else: physical_to_lines = {} return Mesh(points=points, lines=lines, physical_to_lines=physical_to_lines, ensure_outward_normals=ensure_outward_normals) def __str__(self): return f"<Path name:{self.name}, length:{self.path_length:.1e}, number of breakpoints:{len(self.breakpoints)}>"
A path is a mapping from a number in the range [0, path_length] to a three dimensional point. Note that
Path
is a subclass ofGeometricObject
, and therefore can be easily moved and rotated.Ancestors
- GeometricObject
- abc.ABC
Static methods
def aperture(height, radius, extent, z=0.0)
-
Expand source code
@staticmethod def aperture(height, radius, extent, z=0.): """Create an 'aperture'. Note that in a radially symmetric geometry an aperture is basically a rectangle with the right side 'open'. Revolving this path around the z-axis would generate a cylindircal hole in the center. This is the most basic model of an aperture. Parameters ------------------------ height: float The height of the aperture radius: float The radius of the aperture hole (distance to the z-axis) extent: float The maximum x value z: float The z-coordinate of the center of the aperture Returns ------------------------ Path""" return Path.line([extent, 0., -height/2], [radius, 0., -height/2])\ .extend_with_line([radius, 0., height/2]).extend_with_line([extent, 0., height/2]).move(dz=z)
Create an 'aperture'. Note that in a radially symmetric geometry an aperture is basically a rectangle with the right side 'open'. Revolving this path around the z-axis would generate a cylindircal hole in the center. This is the most basic model of an aperture.
Parameters
height
:float
- The height of the aperture
radius
:float
- The radius of the aperture hole (distance to the z-axis)
extent
:float
- The maximum x value
z
:float
- The z-coordinate of the center of the aperture
Returns
def arc(center, start, end, reverse=False)
-
Expand source code
@staticmethod def arc(center, start, end, reverse=False): """Return an arc by specifying the center, start and end point. Parameters ---------------------------- center: (3,) float The center point of the arc. start: (3,) float The start point of the arc. end: (3,) float The endpoint of the arc. Returns ---------------------------- Path""" start_arr, center_arr, end_arr = np.array(start), np.array(center), np.array(end) x_unit = start_arr - center_arr x_unit /= np.linalg.norm(x_unit) vector = end_arr - center_arr y_unit = vector - np.dot(vector, x_unit) * x_unit y_unit /= np.linalg.norm(y_unit) radius = np.linalg.norm(start_arr - center_arr) theta_max = atan2(np.dot(vector, y_unit), np.dot(vector, x_unit)) if reverse: theta_max = theta_max - 2*pi path_length = abs(theta_max * radius) def f(l): theta = l/path_length * theta_max return center + radius*cos(theta)*x_unit + radius*sin(theta)*y_unit return Path(f, path_length)
Return an arc by specifying the center, start and end point.
Parameters
center
:(3,) float
- The center point of the arc.
start
:(3,) float
- The start point of the arc.
end
:(3,) float
- The endpoint of the arc.
Returns
def circle_xy(x0, y0, radius, angle=6.283185307179586)
-
Expand source code
@staticmethod def circle_xy(x0, y0, radius, angle=2*pi): """Returns (part of) a circle in the XY plane around the z-axis. Starting on the positive X-axis. Parameters -------------------------------- x0: float x-coordinate of the center of the circle y0: float y-coordinate of the center of the circle radius: float radius of the circle angle: float The circumference of the circle in radians. The default of 2*pi gives a full circle. Returns --------------------------------- Path""" def f(u): theta = u / radius return np.array([radius*cos(theta), radius*sin(theta), 0.]) return Path(f, angle*radius).move(dx=x0, dy=y0)
Returns (part of) a circle in the XY plane around the z-axis. Starting on the positive X-axis.
Parameters
x0
:float
- x-coordinate of the center of the circle
y0
:float
- y-coordinate of the center of the circle
radius
:float
- radius of the circle
angle
:float
- The circumference of the circle in radians. The default of 2*pi gives a full circle.
Returns
def circle_xz(x0, z0, radius, angle=6.283185307179586)
-
Expand source code
@staticmethod def circle_xz(x0, z0, radius, angle=2*pi): """Returns (part of) a circle in the XZ plane around the x-axis. Starting on the positive x-axis. Parameters -------------------------------- x0: float x-coordinate of the center of the circle z0: float z-coordinate of the center of the circle radius: float radius of the circle angle: float The circumference of the circle in radians. The default of 2*pi gives a full circle. Returns --------------------------------- Path""" def f(u): theta = u / radius return np.array([radius*cos(theta), 0., radius*sin(theta)]) return Path(f, angle*radius).move(dx=x0, dz=z0)
Returns (part of) a circle in the XZ plane around the x-axis. Starting on the positive x-axis.
Parameters
x0
:float
- x-coordinate of the center of the circle
z0
:float
- z-coordinate of the center of the circle
radius
:float
- radius of the circle
angle
:float
- The circumference of the circle in radians. The default of 2*pi gives a full circle.
Returns
def circle_yz(y0, z0, radius, angle=6.283185307179586)
-
Expand source code
@staticmethod def circle_yz(y0, z0, radius, angle=2*pi): """Returns (part of) a circle in the YZ plane around the x-axis. Starting on the positive y-axis. Parameters -------------------------------- y0: float x-coordinate of the center of the circle z0: float z-coordinate of the center of the circle radius: float radius of the circle angle: float The circumference of the circle in radians. The default of 2*pi gives a full circle. Returns --------------------------------- Path""" def f(u): theta = u / radius return np.array([0., radius*cos(theta), radius*sin(theta)]) return Path(f, angle*radius).move(dy=y0, dz=z0)
Returns (part of) a circle in the YZ plane around the x-axis. Starting on the positive y-axis.
Parameters
y0
:float
- x-coordinate of the center of the circle
z0
:float
- z-coordinate of the center of the circle
radius
:float
- radius of the circle
angle
:float
- The circumference of the circle in radians. The default of 2*pi gives a full circle.
Returns
def ellipse(major, minor)
-
Expand source code
@staticmethod def ellipse(major, minor): """Create a path along the outline of an ellipse. The ellipse lies in the XY plane, and the path starts on the positive x-axis. Parameters --------------------------- major: float The major axis of the ellipse (lies along the x-axis). minor: float The minor axis of the ellipse (lies along the y-axis). Returns --------------------------- Path""" # Crazy enough there is no closed formula # to go from path length to a point on the ellipse. # So we have to use `from_irregular_function` def f(u): return np.array([major*cos(2*pi*u), minor*sin(2*pi*u), 0.]) return Path.from_irregular_function(f)
Create a path along the outline of an ellipse. The ellipse lies in the XY plane, and the path starts on the positive x-axis.
Parameters
major
:float
- The major axis of the ellipse (lies along the x-axis).
minor
:float
- The minor axis of the ellipse (lies along the y-axis).
Returns
def from_irregular_function(to_point, N=100, breakpoints=[])
-
Expand source code
@staticmethod def from_irregular_function(to_point, N=100, breakpoints=[]): """Construct a path from a function that is of the form u -> point, where 0 <= u <= 1. The length of the path is determined by integration. Parameters --------------------------------- to_point: callable A function accepting a number in the range [0, 1] and returns a the dimensional point. N: int Number of samples to use in the cubic spline interpolation. breakpoints: float iterable Points (0 <= u <= 1) on the path where the function is non-differentiable. These points are always included in the resulting mesh. Returns --------------------------------- Path""" # path length = integrate |f'(x)| fun = lambda u: np.array(to_point(u)) u = np.linspace(0, 1, N) samples = CubicSpline(u, [fun(u_) for u_ in u]) derivatives = samples.derivative()(u) norm_derivatives = np.linalg.norm(derivatives, axis=1) path_lengths = CubicSpline(u, norm_derivatives).antiderivative()(u) interpolation = CubicSpline(path_lengths, u) # Path length to [0,1] path_length = path_lengths[-1] return Path(lambda pl: fun(interpolation(pl)), path_length, breakpoints=[b*path_length for b in breakpoints])
Construct a path from a function that is of the form u -> point, where 0 <= u <= 1. The length of the path is determined by integration.
Parameters
to_point
:callable
- A function accepting a number in the range [0, 1] and returns a the dimensional point.
N
:int
- Number of samples to use in the cubic spline interpolation.
breakpoints
:float iterable
- Points (0 <= u <= 1) on the path where the function is non-differentiable. These points are always included in the resulting mesh.
Returns
def line(from_, to)
-
Expand source code
@staticmethod def line(from_, to): """Create a straight line between two points. Parameters ------------------------------ from_: (3,) float The starting point of the path. to: (3,) float The endpoint of the path. Returns --------------------------- Path""" from_, to = np.array(from_), np.array(to) length = np.linalg.norm(from_ - to) return Path(lambda pl: (1-pl/length)*from_ + pl/length*to, length)
Create a straight line between two points.
Parameters
from_
:(3,) float
- The starting point of the path.
to
:(3,) float
- The endpoint of the path.
Returns
def polar_arc(radius, angle, start, direction, plane_normal=[0, 1, 0])
-
Expand source code
@staticmethod def polar_arc(radius, angle, start, direction, plane_normal=[0,1,0]): """Return an arc specified by polar coordinates. The arc lies in a plane defined by the provided normal vector and curves from the start point in the specified direction counterclockwise around the normal. Parameters --------------------------- radius : float The radius of the arc. angle : float The angle subtended by the arc (in radians) start: (3,) float The start point of the arc plane_normal : (3,) float The normal vector of the plane containing the arc direction : (3,) float A tangent of the arc at the starting point. Must lie in the specified plane. Does not need to be normalized. Returns ---------------------------- Path""" start = np.array(start, dtype=float) plane_normal = np.array(plane_normal, dtype=float) direction = np.array(direction, dtype=float) direction_unit = direction / np.linalg.norm(direction) plane_normal_unit = plane_normal / np.linalg.norm(plane_normal) if not np.isclose(np.dot(direction_unit, plane_normal_unit), 0., atol=1e-7): corrected_direction = direction - np.dot(direction, plane_normal_unit) * plane_normal_unit raise AssertionError( f"The provided direction {direction} does not lie in the specified plane. \n" f"The closed valid direction is {np.round(corrected_direction, 10)}.") if angle < 0: direction, angle = -direction, -angle center = start - radius * np.cross(direction, plane_normal) center_to_start = start - center def f(l): theta = l/radius return center + np.cos(theta) * center_to_start + np.sin(theta)*np.cross(plane_normal, center_to_start) return Path(f, radius*angle)
Return an arc specified by polar coordinates. The arc lies in a plane defined by the provided normal vector and curves from the start point in the specified direction counterclockwise around the normal.
Parameters
radius
:float
- The radius of the arc.
angle
:float
- The angle subtended by the arc (in radians)
start
:(3,) float
- The start point of the arc
plane_normal
:(3,) float
- The normal vector of the plane containing the arc
direction
:(3,) float
- A tangent of the arc at the starting point. Must lie in the specified plane. Does not need to be normalized.
Returns
def rectangle_xy(xmin, xmax, ymin, ymax)
-
Expand source code
@staticmethod def rectangle_xy(xmin, xmax, ymin, ymax): """Create a rectangle in the XY plane. The path starts at (xmin, ymin, 0), and is counter clockwise around the z-axis. Parameters ------------------------ xmin: float Minimum x-coordinate of the corner points. xmax: float Maximum x-coordinate of the corner points. ymin: float Minimum y-coordinate of the corner points. ymax: float Maximum y-coordinate of the corner points. Returns ----------------------- Path""" return Path.line([xmin, ymin, 0.], [xmin, ymax, 0.]) \ .extend_with_line([xmax, ymax, 0.]).extend_with_line([xmax, ymin, 0.]).close()
Create a rectangle in the XY plane. The path starts at (xmin, ymin, 0), and is counter clockwise around the z-axis.
Parameters
xmin
:float
- Minimum x-coordinate of the corner points.
xmax
:float
- Maximum x-coordinate of the corner points.
ymin
:float
- Minimum y-coordinate of the corner points.
ymax
:float
- Maximum y-coordinate of the corner points.
Returns
def rectangle_xz(xmin, xmax, zmin, zmax)
-
Expand source code
@staticmethod def rectangle_xz(xmin, xmax, zmin, zmax): """Create a rectangle in the XZ plane. The path starts at (xmin, 0, zmin), and is counter clockwise around the y-axis. Parameters ------------------------ xmin: float Minimum x-coordinate of the corner points. xmax: float Maximum x-coordinate of the corner points. zmin: float Minimum z-coordinate of the corner points. zmax: float Maximum z-coordinate of the corner points. Returns ----------------------- Path""" return Path.line([xmin, 0., zmin], [xmax, 0, zmin]) \ .extend_with_line([xmax, 0, zmax]).extend_with_line([xmin, 0., zmax]).close()
Create a rectangle in the XZ plane. The path starts at (xmin, 0, zmin), and is counter clockwise around the y-axis.
Parameters
xmin
:float
- Minimum x-coordinate of the corner points.
xmax
:float
- Maximum x-coordinate of the corner points.
zmin
:float
- Minimum z-coordinate of the corner points.
zmax
:float
- Maximum z-coordinate of the corner points.
Returns
def rectangle_yz(ymin, ymax, zmin, zmax)
-
Expand source code
@staticmethod def rectangle_yz(ymin, ymax, zmin, zmax): """Create a rectangle in the YZ plane. The path starts at (0, ymin, zmin), and is counter clockwise around the x-axis. Parameters ------------------------ ymin: float Minimum y-coordinate of the corner points. ymax: float Maximum y-coordinate of the corner points. zmin: float Minimum z-coordinate of the corner points. zmax: float Maximum z-coordinate of the corner points. Returns ----------------------- Path""" return Path.line([0., ymin, zmin], [0, ymin, zmax]) \ .extend_with_line([0., ymax, zmax]).extend_with_line([0., ymax, zmin]).close()
Create a rectangle in the YZ plane. The path starts at (0, ymin, zmin), and is counter clockwise around the x-axis.
Parameters
ymin
:float
- Minimum y-coordinate of the corner points.
ymax
:float
- Maximum y-coordinate of the corner points.
zmin
:float
- Minimum z-coordinate of the corner points.
zmax
:float
- Maximum z-coordinate of the corner points.
Returns
def spline_through_points(points, N=100)
-
Expand source code
@staticmethod def spline_through_points(points, N=100): """Construct a path by fitting a cubic spline through the given points. Parameters ------------------------- points: (N, 3) ndarray of float Three dimensional points through which the spline is fitted. Returns ------------------------- Path""" x = np.linspace(0, 1, len(points)) interp = CubicSpline(x, points) return Path.from_irregular_function(interp, N=N)
Construct a path by fitting a cubic spline through the given points.
Parameters
points
:(N, 3) ndarray
offloat
- Three dimensional points through which the spline is fitted.
Returns
Methods
def __add__(self, other)
-
Expand source code
def __add__(self, other): """Add two paths to create a PathCollection. Note that a PathCollection supports a subset of the methods of Path (for example, movement, rotation and meshing). Use the + operator to combine paths into a path collection: path1 + path2 + path3. Returns ------------------------- PathCollection""" if isinstance(other, Path): return PathCollection([self, other]) if isinstance(other, PathCollection): return PathCollection([self] + [other.paths]) return NotImplemented
Add two paths to create a PathCollection. Note that a PathCollection supports a subset of the methods of Path (for example, movement, rotation and meshing). Use the + operator to combine paths into a path collection: path1 + path2 + path3.
Returns
def __call__(self, t)
-
Expand source code
def __call__(self, t): """Evaluate a point along the path. Parameters ------------------------ t: float The length along the path. Returns ------------------------ (3,) float Three dimensional point.""" return self.fun(t)
Evaluate a point along the path.
Parameters
t
:float
- The length along the path.
Returns
(3,) float
Three dimensional point.
def __rshift__(self, other)
-
Expand source code
def __rshift__(self, other): """Combine two paths to create a single path. The endpoint of the first path needs to match the starting point of the second path. This common point is marked as a breakpoint and always included in the mesh. To use this function use the right shift operator (p1 >> p2). Parameters ----------------------- other: Path The second path, to extend the current path. Returns ----------------------- Path""" assert isinstance(other, Path), "Exteding path with object that is not actually a Path" assert _points_close(self.endpoint(), other.starting_point()) total = self.path_length + other.path_length def f(t): assert 0 <= t <= total if t <= self.path_length: return self(t) else: return other(t - self.path_length) return Path(f, total, self.breakpoints + [self.path_length] + other.breakpoints, name=self.name)
Combine two paths to create a single path. The endpoint of the first path needs to match the starting point of the second path. This common point is marked as a breakpoint and always included in the mesh. To use this function use the right shift operator (p1 >> p2).
Parameters
other
:Path
- The second path, to extend the current path.
Returns
def add_phase(self, l)
-
Expand source code
def add_phase(self, l): """Add a phase to a closed path. A path is closed when the starting point is equal to the end point. A phase of length l means that the path starts 'further down' the closed path. Parameters -------------------- l: float The phase (expressed as a path length). The resulting path starts l distance along the original path. Returns -------------------- Path""" assert self.is_closed() def fun(u): return self( (l + u) % self.path_length ) return Path(fun, self.path_length, sorted([(b-l)%self.path_length for b in self.breakpoints + [0.]]), name=self.name)
Add a phase to a closed path. A path is closed when the starting point is equal to the end point. A phase of length l means that the path starts 'further down' the closed path.
Parameters
l
:float
- The phase (expressed as a path length). The resulting path starts l distance along the original path.
Returns
def average(self, fun)
-
Expand source code
def average(self, fun): """Average a function along the path, by integrating 1/l * fun(path(l)) with 0 <= l <= path length. Parameters -------------------------- fun: callable (3,) -> float A function taking a three dimensional point and returning a float. Returns ------------------------- float The average value of the function along the point.""" return quad(lambda s: fun(self(s)), 0, self.path_length, points=self.breakpoints)[0]/self.path_length
Average a function along the path, by integrating 1/l * fun(path(l)) with 0 <= l <= path length.
Parameters
fun
:callable (3,) -> float
- A function taking a three dimensional point and returning a float.
Returns
float
The average value of the function along the point.
def close(self)
-
Expand source code
def close(self): """Close the path, by making a straight line to the starting point. Returns ------------------- Path""" return self.extend_with_line(self.starting_point())
def cut(self, length)
-
Expand source code
def cut(self, length): """Cut the path in two at a specific length along the path. Parameters -------------------------------------- length: float The length along the path at which to cut. Returns ------------------------------------- (Path, Path) A tuple containing two paths. The first path contains the path upto length, while the second path contains the rest.""" return (Path(self.fun, length, [b for b in self.breakpoints if b <= length], name=self.name), Path(lambda l: self.fun(l + length), self.path_length - length, [b - length for b in self.breakpoints if b >= length], name=self.name))
Cut the path in two at a specific length along the path.
Parameters
length
:float
- The length along the path at which to cut.
Returns
(Path, Path)
A tuple containing two paths. The first path contains the path upto length, while the second path contains the rest.
def endpoint(self)
-
Expand source code
def endpoint(self): """Returns the endpoint of the path. Returns ------------------------ (3,) float The endpoint of the path.""" return self(self.path_length)
Returns the endpoint of the path.
Returns
(3,) float
The endpoint of the path.
def extend_with_arc(self, center, end, reverse=False)
-
Expand source code
def extend_with_arc(self, center, end, reverse=False): """Extend the current path using an arc. Parameters ---------------------------- center: (3,) float The center point of the arc. end: (3,) float The endpoint of the arc, shoud lie on a circle determined by the given centerpoint and the current endpoint. Returns ----------------------------- Path""" start = self.endpoint() return self >> Path.arc(center, start, end, reverse=reverse)
Extend the current path using an arc.
Parameters
center
:(3,) float
- The center point of the arc.
end
:(3,) float
- The endpoint of the arc, shoud lie on a circle determined by the given centerpoint and the current endpoint.
Returns
def extend_with_line(self, point)
-
Expand source code
def extend_with_line(self, point): """Extend the current path by a line from the current endpoint to the given point. The given point is marked a breakpoint. Parameters ---------------------- point: (3,) float The new endpoint. Returns --------------------- Path""" point = np.array(point) assert point.shape == (3,), "Please supply a three dimensional point to .extend_with_line(...)" l = Path.line(self.endpoint(), point) return self >> l
Extend the current path by a line from the current endpoint to the given point. The given point is marked a breakpoint.
Parameters
point
:(3,) float
- The new endpoint.
Returns
def extend_with_polar_arc(self, radius, angle, plane_normal=[0, 1, 0])
-
Expand source code
def extend_with_polar_arc(self, radius, angle, plane_normal=[0, 1, 0]): """Extend the current path by a smooth arc using polar coordinates. The arc is defined by a specified radius and angle and rotates counterclockwise around around the normal that defines the arcing plane. Parameters --------------------------- radius : float The radius of the arc angle : float The angle subtended by the arc (in radians) plane_normal : (3,) float The normal vector of the plane containing the arc Returns ---------------------------- Path""" plane_normal = np.array(plane_normal, dtype=float) start_point = self.endpoint() direction = self.velocity_vector(self.path_length) plane_normal_unit = plane_normal / np.linalg.norm(plane_normal) direction_unit = direction / np.linalg.norm(direction) if not np.isclose(np.dot(plane_normal_unit, direction_unit), 0,atol=1e-7): corrected_normal = plane_normal - np.dot(direction_unit, plane_normal) * direction_unit raise AssertionError( f"The provided plane normal {plane_normal} is not orthogonal to the direction {direction} \n" f"of the path at the endpoint so no smooth arc can be made. The closest valid normal is " f"{np.round(corrected_normal, 10)}.") return self >> Path.polar_arc(radius, angle, start_point, direction, plane_normal)
Extend the current path by a smooth arc using polar coordinates. The arc is defined by a specified radius and angle and rotates counterclockwise around around the normal that defines the arcing plane.
Parameters
radius
:float
- The radius of the arc
angle
:float
- The angle subtended by the arc (in radians)
plane_normal
:(3,) float
- The normal vector of the plane containing the arc
Returns
def extrude(self, vector)
-
Expand source code
def extrude(self, vector): """Create a surface by extruding the path along a vector. The vector gives both the length and the direction of the extrusion. Parameters ------------------------- vector: (3,) float The direction and length (norm of the vector) to extrude by. Returns ------------------------- Surface""" vector = np.array(vector) length = np.linalg.norm(vector) def f(u, v): return self(u) + v/length*vector return Surface(f, self.path_length, length, self.breakpoints, name=self.name)
Create a surface by extruding the path along a vector. The vector gives both the length and the direction of the extrusion.
Parameters
vector
:(3,) float
- The direction and length (norm of the vector) to extrude by.
Returns
def extrude_by_path(self, p2)
-
Expand source code
def extrude_by_path(self, p2): """Create a surface by extruding the path along a second path. The second path does not need to start along the first path. Imagine the surface created by moving the first path along the second path. Parameters ------------------------- p2: Path The (second) path defining the extrusion. Returns ------------------------ Surface""" p0 = p2.starting_point() def f(u, v): return self(u) + p2(v) - p0 return Surface(f, self.path_length, p2.path_length, self.breakpoints, p2.breakpoints, name=self.name)
def is_closed(self)
-
Expand source code
def is_closed(self): """Determine whether the path is closed, by comparing the starting and endpoint. Returns ---------------------- bool: True if the path is closed, False otherwise.""" return _points_close(self.starting_point(), self.endpoint())
Determine whether the path is closed, by comparing the starting and endpoint.
Returns
bool: True if the path is closed, False otherwise.
def map_points(self, fun)
-
Expand source code
def map_points(self, fun): """Return a new function by mapping a function over points along the path (see `traceon.mesher.GeometricObject`). The path length is assumed to stay the same after this operation. Parameters ---------------------------- fun: callable (3,) -> (3,) Function taking three dimensional points and returning three dimensional points. Returns --------------------------- Path""" return Path(lambda u: fun(self(u)), self.path_length, self.breakpoints, name=self.name)
Return a new function by mapping a function over points along the path (see
GeometricObject
). The path length is assumed to stay the same after this operation.Parameters
fun
:callable (3,) -> (3,)
- Function taking three dimensional points and returning three dimensional points.
Returns
Path
def mesh(self,
mesh_size=None,
mesh_size_factor=None,
higher_order=False,
name=None,
ensure_outward_normals=True)-
Expand source code
def mesh(self, mesh_size=None, mesh_size_factor=None, higher_order=False, name=None, ensure_outward_normals=True): """Mesh the path, so it can be used in the BEM solver. The result of meshing a path are (possibly curved) line elements. Parameters -------------------------- mesh_size: float Determines amount of elements in the mesh. A smaller mesh size leads to more elements. mesh_size_factor: float Alternative way to specify the mesh size, which scales with the dimensions of the geometry, and therefore more easily translates between different geometries. higher_order: bool Whether to generate a higher order mesh. A higher order produces curved line elements (determined by 4 points on each curved element). The BEM solver supports higher order elements in radial symmetric geometries only. name: str Assign this name to the mesh, instead of the name value assinged to Surface.name Returns ---------------------------- `traceon.mesher.Mesh`""" u = discretize_path(self.path_length, self.breakpoints, mesh_size, mesh_size_factor, N_factor=3 if higher_order else 1) N = len(u) points = np.zeros( (N, 3) ) for i in range(N): points[i] = self(u[i]) if not higher_order: lines = np.array([np.arange(N-1), np.arange(1, N)]).T else: assert N % 3 == 1 r = np.arange(N) p0 = r[0:-1:3] p1 = r[3::3] p2 = r[1::3] p3 = r[2::3] lines = np.array([p0, p1, p2, p3]).T assert lines.dtype == np.int64 or lines.dtype == np.int32 name = self.name if name is None else name if name is not None: physical_to_lines = {name:np.arange(len(lines))} else: physical_to_lines = {} return Mesh(points=points, lines=lines, physical_to_lines=physical_to_lines, ensure_outward_normals=ensure_outward_normals)
Mesh the path, so it can be used in the BEM solver. The result of meshing a path are (possibly curved) line elements.
Parameters
mesh_size
:float
- Determines amount of elements in the mesh. A smaller mesh size leads to more elements.
mesh_size_factor
:float
- Alternative way to specify the mesh size, which scales with the dimensions of the geometry, and therefore more easily translates between different geometries.
higher_order
:bool
- Whether to generate a higher order mesh. A higher order produces curved line elements (determined by 4 points on each curved element). The BEM solver supports higher order elements in radial symmetric geometries only.
name
:str
- Assign this name to the mesh, instead of the name value assinged to Surface.name
Returns
def middle_point(self)
-
Expand source code
def middle_point(self): """Returns the midpoint of the path (in terms of length along the path.) Returns ---------------------- (3,) float The point at the middle of the path.""" return self(self.path_length/2)
Returns the midpoint of the path (in terms of length along the path.)
Returns
(3,) float
The point at the middle of the path.
def reverse(self)
-
Expand source code
def reverse(self): """Generate a reversed version of the current path. The reversed path is created by inverting the traversal direction, such that the start becomes the end and vice versa. Returns ---------------------------- Path""" return Path(lambda t: self(self.path_length-t), self.path_length, [self.path_length - b for b in self.breakpoints], self.name)
Generate a reversed version of the current path. The reversed path is created by inverting the traversal direction, such that the start becomes the end and vice versa.
Returns
def revolve_x(self, angle=6.283185307179586)
-
Expand source code
def revolve_x(self, angle=2*pi): """Create a surface by revolving the path anti-clockwise around the x-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. Returns ----------------------- Surface""" r_avg = self.average(lambda p: sqrt(p[1]**2 + p[2]**2)) length2 = 2*pi*r_avg def f(u, v): p = self(u) theta = atan2(p[2], p[1]) r = sqrt(p[1]**2 + p[2]**2) return np.array([p[0], r*cos(theta + v/length2*angle), r*sin(theta + v/length2*angle)]) return Surface(f, self.path_length, length2, self.breakpoints, name=self.name)
Create a surface by revolving the path anti-clockwise around the x-axis.
Parameters
angle
:float
- The angle by which to revolve. THe default 2*pi gives a full revolution.
Returns
def revolve_y(self, angle=6.283185307179586)
-
Expand source code
def revolve_y(self, angle=2*pi): """Create a surface by revolving the path anti-clockwise around the y-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. Returns ----------------------- Surface""" r_avg = self.average(lambda p: sqrt(p[0]**2 + p[2]**2)) length2 = 2*pi*r_avg def f(u, v): p = self(u) theta = atan2(p[2], p[0]) r = sqrt(p[0]*p[0] + p[2]*p[2]) return np.array([r*cos(theta + v/length2*angle), p[1], r*sin(theta + v/length2*angle)]) return Surface(f, self.path_length, length2, self.breakpoints, name=self.name)
Create a surface by revolving the path anti-clockwise around the y-axis.
Parameters
angle
:float
- The angle by which to revolve. THe default 2*pi gives a full revolution.
Returns
def revolve_z(self, angle=6.283185307179586)
-
Expand source code
def revolve_z(self, angle=2*pi): """Create a surface by revolving the path anti-clockwise around the z-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. Returns ----------------------- Surface""" r_avg = self.average(lambda p: sqrt(p[0]**2 + p[1]**2)) length2 = 2*pi*r_avg def f(u, v): p = self(u) theta = atan2(p[1], p[0]) r = sqrt(p[0]*p[0] + p[1]*p[1]) return np.array([r*cos(theta + v/length2*angle), r*sin(theta + v/length2*angle), p[2]]) return Surface(f, self.path_length, length2, self.breakpoints, name=self.name)
Create a surface by revolving the path anti-clockwise around the z-axis.
Parameters
angle
:float
- The angle by which to revolve. THe default 2*pi gives a full revolution.
Returns
def starting_point(self)
-
Expand source code
def starting_point(self): """Returns the starting point of the path. Returns --------------------- (3,) float The starting point of the path.""" return self(0.)
Returns the starting point of the path.
Returns
(3,) float
The starting point of the path.
def velocity_vector(self, t)
-
Expand source code
def velocity_vector(self, t): """Calculate the velocity (tangent) vector at a specific point on the path using cubic spline interpolation. Parameters ---------------------------- t : float The point on the path at which to calculate the velocity num_splines : int The number of samples used for cubic spline interpolation Returns ---------------------------- (3,) np.ndarray of float""" samples = np.linspace(t - self.path_length*1e-3, t + self.path_length*1e-3, 7) # Odd number to include t samples_on_path = [s for s in samples if 0 <= s <= self.path_length] assert len(samples_on_path), "Please supply a point that lies on the path" return CubicSpline(samples_on_path, [self(s) for s in samples_on_path])(t, nu=1)
Calculate the velocity (tangent) vector at a specific point on the path using cubic spline interpolation.
Parameters
t
:float
- The point on the path at which to calculate the velocity
num_splines
:int
- The number of samples used for cubic spline interpolation
Returns
(3,) np.ndarray of float
Inherited members
class PathCollection (paths)
-
Expand source code
class PathCollection(GeometricObject): """A PathCollection is a collection of `Path`. It can be created using the + operator (for example path1+path2). Note that `PathCollection` is a subclass of `traceon.mesher.GeometricObject`, and therefore can be easily moved and rotated.""" def __init__(self, paths): assert all([isinstance(p, Path) for p in paths]) self.paths = paths self._name = None @property def name(self): return self._name @name.setter def name(self, name): self._name = name for path in self.paths: path.name = name def map_points(self, fun): return PathCollection([p.map_points(fun) for p in self.paths]) def mesh(self, mesh_size=None, mesh_size_factor=None, higher_order=False, name=None, ensure_outward_normals=True): """See `Path.mesh`""" mesh = Mesh() name = self.name if name is None else name for p in self.paths: mesh = mesh + p.mesh(mesh_size=mesh_size, mesh_size_factor=mesh_size_factor, higher_order=higher_order, name=name, ensure_outward_normals=ensure_outward_normals) return mesh def _map_to_surfaces(self, f, *args, **kwargs): surfaces = [] for p in self.paths: surfaces.append(f(p, *args, **kwargs)) return SurfaceCollection(surfaces) def __add__(self, other): """Allows you to combine paths and path collection using the + operator (path1 + path2).""" if isinstance(other, Path): return PathCollection(self.paths+[other]) if isinstance(other, PathCollection): return PathCollection(self.paths+other.paths) return NotImplemented def __iadd__(self, other): """Allows you to add paths to the collection using the += operator.""" assert isinstance(other, PathCollection) or isinstance(other, Path) if isinstance(other, Path): self.paths.append(other) else: self.paths.extend(other.paths) def __getitem__(self, index): selection = np.array(self.paths, dtype=object).__getitem__(index) if isinstance(selection, np.ndarray): return PathCollection(selection.tolist()) else: return selection def __len__(self): return len(self.paths) def __iter__(self): return iter(self.paths) def revolve_x(self, angle=2*pi): return self._map_to_surfaces(Path.revolve_x, angle=angle) def revolve_y(self, angle=2*pi): return self._map_to_surfaces(Path.revolve_y, angle=angle) def revolve_z(self, angle=2*pi): return self._map_to_surfaces(Path.revolve_z, angle=angle) def extrude(self, vector): return self._map_to_surfaces(Path.extrude, vector) def extrude_by_path(self, p2): return self._map_to_surfaces(Path.extrude_by_path, p2) def __str__(self): return f"<PathCollection with {len(self.paths)} paths, name: {self.name}>"
A PathCollection is a collection of
Path
. It can be created using the + operator (for example path1+path2). Note thatPathCollection
is a subclass ofGeometricObject
, and therefore can be easily moved and rotated.Ancestors
- GeometricObject
- abc.ABC
Instance variables
prop name
-
Expand source code
@property def name(self): return self._name
Methods
def __add__(self, other)
-
Expand source code
def __add__(self, other): """Allows you to combine paths and path collection using the + operator (path1 + path2).""" if isinstance(other, Path): return PathCollection(self.paths+[other]) if isinstance(other, PathCollection): return PathCollection(self.paths+other.paths) return NotImplemented
Allows you to combine paths and path collection using the + operator (path1 + path2).
def __iadd__(self, other)
-
Expand source code
def __iadd__(self, other): """Allows you to add paths to the collection using the += operator.""" assert isinstance(other, PathCollection) or isinstance(other, Path) if isinstance(other, Path): self.paths.append(other) else: self.paths.extend(other.paths)
Allows you to add paths to the collection using the += operator.
def extrude(self, vector)
-
Expand source code
def extrude(self, vector): return self._map_to_surfaces(Path.extrude, vector)
def extrude_by_path(self, p2)
-
Expand source code
def extrude_by_path(self, p2): return self._map_to_surfaces(Path.extrude_by_path, p2)
def mesh(self,
mesh_size=None,
mesh_size_factor=None,
higher_order=False,
name=None,
ensure_outward_normals=True)-
Expand source code
def mesh(self, mesh_size=None, mesh_size_factor=None, higher_order=False, name=None, ensure_outward_normals=True): """See `Path.mesh`""" mesh = Mesh() name = self.name if name is None else name for p in self.paths: mesh = mesh + p.mesh(mesh_size=mesh_size, mesh_size_factor=mesh_size_factor, higher_order=higher_order, name=name, ensure_outward_normals=ensure_outward_normals) return mesh
See
Path.mesh()
def revolve_x(self, angle=6.283185307179586)
-
Expand source code
def revolve_x(self, angle=2*pi): return self._map_to_surfaces(Path.revolve_x, angle=angle)
def revolve_y(self, angle=6.283185307179586)
-
Expand source code
def revolve_y(self, angle=2*pi): return self._map_to_surfaces(Path.revolve_y, angle=angle)
def revolve_z(self, angle=6.283185307179586)
-
Expand source code
def revolve_z(self, angle=2*pi): return self._map_to_surfaces(Path.revolve_z, angle=angle)
Inherited members
class Surface (fun, path_length1, path_length2, breakpoints1=[], breakpoints2=[], name=None)
-
Expand source code
class Surface(GeometricObject): """A Surface is a mapping from two numbers to a three dimensional point. Note that `Surface` is a subclass of `traceon.mesher.GeometricObject`, and therefore can be easily moved and rotated.""" def __init__(self, fun, path_length1, path_length2, breakpoints1=[], breakpoints2=[], name=None): self.fun = fun self.path_length1 = path_length1 self.path_length2 = path_length2 self.breakpoints1 = breakpoints1 self.breakpoints2 = breakpoints2 self.name = name def _sections(self): b1 = [0.] + self.breakpoints1 + [self.path_length1] b2 = [0.] + self.breakpoints2 + [self.path_length2] for u0, u1 in zip(b1[:-1], b1[1:]): for v0, v1 in zip(b2[:-1], b2[1:]): def fun(u, v, u0_=u0, v0_=v0): return self(u0_+u, v0_+v) yield Surface(fun, u1-u0, v1-v0, [], []) def __call__(self, u, v): """Evaluate the surface at point (u, v). Returns a three dimensional point. Parameters ------------------------------ u: float First coordinate, should be 0 <= u <= self.path_length1 v: float Second coordinate, should be 0 <= v <= self.path_length2 Returns ---------------------------- (3,) np.ndarray of double""" return self.fun(u, v) def map_points(self, fun): return Surface(lambda u, v: fun(self(u, v)), self.path_length1, self.path_length2, self.breakpoints1, self.breakpoints2, name=self.name) @staticmethod def spanned_by_paths(path1, path2): """Create a surface by considering the area between two paths. Imagine two points progressing along the path simultaneously and at each step drawing a straight line between the points. Parameters -------------------------- path1: Path The path characterizing one edge of the surface path2: Path The path characterizing the opposite edge of the surface Returns -------------------------- Surface""" length1 = max(path1.path_length, path2.path_length) length_start = np.linalg.norm(path1.starting_point() - path2.starting_point()) length_final = np.linalg.norm(path1.endpoint() - path2.endpoint()) length2 = (length_start + length_final)/2 def f(u, v): p1 = path1(u/length1*path1.path_length) # u/l*p = b, u = l*b/p p2 = path2(u/length1*path2.path_length) return (1-v/length2)*p1 + v/length2*p2 breakpoints = sorted([length1*b/path1.path_length for b in path1.breakpoints] + \ [length1*b/path2.path_length for b in path2.breakpoints]) return Surface(f, length1, length2, breakpoints) @staticmethod def sphere(radius): """Create a sphere with the given radius, the center of the sphere is at the origin, but can easily be moved by using the `mesher.GeometricObject.move` method. Parameters ------------------------------ radius: float The radius of the sphere Returns ----------------------------- Surface representing the sphere""" length1 = 2*pi*radius length2 = pi*radius def f(u, v): phi = u/radius theta = v/radius return np.array([ radius*sin(theta)*cos(phi), radius*sin(theta)*sin(phi), radius*cos(theta)]) return Surface(f, length1, length2) @staticmethod def box(p0, p1): """Create a box with the two given points at opposite corners. Parameters ------------------------------- p0: (3,) np.ndarray double One corner of the box p1: (3,) np.ndarray double The opposite corner of the box Returns ------------------------------- Surface representing the box""" x0, y0, z0 = p0 x1, y1, z1 = p1 xmin, ymin, zmin = min(x0, x1), min(y0, y1), min(z0, z1) xmax, ymax, zmax = max(x0, x1), max(y0, y1), max(z0, z1) path1 = Path.line([xmin, ymin, zmax], [xmax, ymin, zmax]) path2 = Path.line([xmin, ymin, zmin], [xmax, ymin, zmin]) path3 = Path.line([xmin, ymax, zmax], [xmax, ymax, zmax]) path4 = Path.line([xmin, ymax, zmin], [xmax, ymax, zmin]) side_path = Path.line([xmin, ymin, zmin], [xmax, ymin, zmin])\ .extend_with_line([xmax, ymin, zmax])\ .extend_with_line([xmin, ymin, zmax])\ .close() side_surface = side_path.extrude([0.0, ymax-ymin, 0.0]) top = Surface.spanned_by_paths(path1, path2) bottom = Surface.spanned_by_paths(path4, path3) return (top + bottom + side_surface) @staticmethod def from_boundary_paths(p1, p2, p3, p4): """Create a surface with the four given paths as the boundary. Parameters ---------------------------------- p1: Path First edge of the surface p2: Path Second edge of the surface p3: Path Third edge of the surface p4: Path Fourth edge of the surface Returns ------------------------------------ Surface with the four giving paths as the boundary """ path_length_p1_and_p3 = (p1.path_length + p3.path_length)/2 path_length_p2_and_p4 = (p2.path_length + p4.path_length)/2 def f(u, v): u /= path_length_p1_and_p3 v /= path_length_p2_and_p4 a = (1-v) b = (1-u) c = v d = u return 1/2*(a*p1(u*p1.path_length) + \ b*p4((1-v)*p4.path_length) + \ c*p3((1-u)*p3.path_length) + \ d*p2(v*p2.path_length)) # Scale the breakpoints appropriately b1 = sorted([b/p1.path_length * path_length_p1_and_p3 for b in p1.breakpoints] + \ [b/p3.path_length * path_length_p1_and_p3 for b in p3.breakpoints]) b2 = sorted([b/p2.path_length * path_length_p2_and_p4 for b in p2.breakpoints] + \ [b/p4.path_length * path_length_p2_and_p4 for b in p4.breakpoints]) return Surface(f, path_length_p1_and_p3, path_length_p2_and_p4, b1, b2) @staticmethod def disk_xz(x0, z0, radius): """Create a disk in the XZ plane. Parameters ------------------------ x0: float x-coordiante of the center of the disk z0: float z-coordinate of the center of the disk radius: float radius of the disk Returns ----------------------- Surface""" assert radius > 0, "radius must be a positive number" disk_at_origin = Path.line([0.0, 0.0, 0.0], [radius, 0.0, 0.0]).revolve_y() return disk_at_origin.move(dx=x0, dz=z0) @staticmethod def disk_yz(y0, z0, radius): """Create a disk in the YZ plane. Parameters ------------------------ y0: float y-coordiante of the center of the disk z0: float z-coordinate of the center of the disk radius: float radius of the disk Returns ----------------------- Surface""" assert radius > 0, "radius must be a positive number" disk_at_origin = Path.line([0.0, 0.0, 0.0], [0.0, radius, 0.0]).revolve_x() return disk_at_origin.move(dy=y0, dz=z0) @staticmethod def disk_xy(x0, y0, radius): """Create a disk in the XY plane. Parameters ------------------------ x0: float x-coordiante of the center of the disk y0: float y-coordinate of the center of the disk radius: float radius of the disk Returns ----------------------- Surface""" assert radius > 0, "radius must be a positive number" disk_at_origin = Path.line([0.0, 0.0, 0.0], [radius, 0.0, 0.0]).revolve_z() return disk_at_origin.move(dx=x0, dy=y0) @staticmethod def rectangle_xz(xmin, xmax, zmin, zmax): """Create a rectangle in the XZ plane. The path starts at (xmin, 0, zmin), and is counter clockwise around the y-axis. Parameters ------------------------ xmin: float Minimum x-coordinate of the corner points. xmax: float Maximum x-coordinate of the corner points. zmin: float Minimum z-coordinate of the corner points. zmax: float Maximum z-coordinate of the corner points. Returns ----------------------- Surface representing the rectangle""" return Path.line([xmin, 0., zmin], [xmin, 0, zmax]).extrude([xmax-xmin, 0., 0.]) @staticmethod def rectangle_yz(ymin, ymax, zmin, zmax): """Create a rectangle in the YZ plane. The path starts at (0, ymin, zmin), and is counter clockwise around the x-axis. Parameters ------------------------ ymin: float Minimum y-coordinate of the corner points. ymax: float Maximum y-coordinate of the corner points. zmin: float Minimum z-coordinate of the corner points. zmax: float Maximum z-coordinate of the corner points. Returns ----------------------- Surface representing the rectangle""" return Path.line([0., ymin, zmin], [0., ymin, zmax]).extrude([0., ymax-ymin, 0.]) @staticmethod def rectangle_xy(xmin, xmax, ymin, ymax): """Create a rectangle in the XY plane. The path starts at (xmin, ymin, 0), and is counter clockwise around the z-axis. Parameters ------------------------ xmin: float Minimum x-coordinate of the corner points. xmax: float Maximum x-coordinate of the corner points. ymin: float Minimum y-coordinate of the corner points. ymax: float Maximum y-coordinate of the corner points. Returns ----------------------- Surface representing the rectangle""" return Path.line([xmin, ymin, 0.], [xmin, ymax, 0.]).extrude([xmax-xmin, 0., 0.]) @staticmethod def annulus_xy(x0, y0, inner_radius, outer_radius): """Create a annulus in the XY plane. Parameters ------------------------ x0: float x-coordiante of the center of the annulus y0: float y-coordinate of the center of the annulus inner_radius: float inner radius of the annulus outer_radius: outer radius of the annulus Returns ----------------------- Surface""" assert inner_radius > 0 and outer_radius > 0, "radii must be positive" assert outer_radius > inner_radius, "outer radius must be larger than inner radius" annulus_at_origin = Path.line([inner_radius, 0.0, 0.0], [outer_radius, 0.0, 0.0]).revolve_z() return annulus_at_origin.move(dx=x0, dy=y0) @staticmethod def annulus_xz(x0, z0, inner_radius, outer_radius): """Create a annulus in the XZ plane. Parameters ------------------------ x0: float x-coordiante of the center of the annulus z0: float z-coordinate of the center of the annulus inner_radius: float inner radius of the annulus outer_radius: outer radius of the annulus Returns ----------------------- Surface""" assert inner_radius > 0 and outer_radius > 0, "radii must be positive" assert outer_radius > inner_radius, "outer radius must be larger than inner radius" annulus_at_origin = Path.line([inner_radius, 0.0, 0.0], [outer_radius, 0.0, 0.0]).revolve_y() return annulus_at_origin.move(dx=x0, dz=z0) @staticmethod def annulus_yz(y0, z0, inner_radius, outer_radius): """Create a annulus in the YZ plane. Parameters ------------------------ y0: float y-coordiante of the center of the annulus z0: float z-coordinate of the center of the annulus inner_radius: float inner radius of the annulus outer_radius: outer radius of the annulus Returns ----------------------- Surface""" assert inner_radius > 0 and outer_radius > 0, "radii must be positive" assert outer_radius > inner_radius, "outer radius must be larger than inner radius" annulus_at_origin = Path.line([0.0, inner_radius, 0.0], [0.0, outer_radius, 0.0]).revolve_x() return annulus_at_origin.move(dy=y0, dz=z0) @staticmethod def aperture(height, radius, extent, z=0.): return Path.aperture(height, radius, extent, z=z).revolve_z() def get_boundary_paths(self): """Get the boundary paths of the surface. Computes the boundary paths (edges) of the surface and combines them into a `PathCollection`. Non-closed paths get filtered out when closed paths are present, as only closed paths represent true boundaries in this case. Note that this function might behave unexpectedly for surfaces without any boundaries (e.g a sphere). Returns ---------------------------- PathCollection representing the boundary paths of the surface""" b1 = Path(lambda u: self(u, 0.), self.path_length1, self.breakpoints1, self.name) b2 = Path(lambda u: self(u, self.path_length2), self.path_length1, self.breakpoints1, self.name) b3 = Path(lambda v: self(0., v), self.path_length2, self.breakpoints2, self.name) b4 = Path(lambda v: self(self.path_length1, v), self.path_length2, self.breakpoints2, self.name) boundary = b1 + b2 + b3 + b4 if any([b.is_closed() for b in boundary.paths]): boundary = PathCollection([b for b in boundary.paths if b.is_closed()]) return boundary def extrude_boundary(self, vector, enclose=True): """ Extrude the boundary paths of the surface along a vector. The vector gives both the length and the direction of the extrusion. Parameters ------------------------- vector: (3,) float The direction and length (norm of the vector) to extrude by. enclose: bool Whether enclose the extrusion by adding a copy of the original surface moved by the extrusion vector to the resulting SurfaceCollection. Returns ------------------------- SurfaceCollection""" boundary = self.get_boundary_paths() extruded_boundary = boundary.extrude(vector) if enclose: return self + extruded_boundary + self.move(*vector) else: return self + extruded_boundary def extrude_boundary_by_path(self, path, enclose=True): """Extrude the boundary paths of a surface along a path. The path does not need to start at the surface. Imagine the extrusion surface created by moving the boundary paths along the path. Parameters ------------------------- path: Path The path defining the extrusion. enclose: bool Whether to enclose the extrusion by adding a copy of the original surface moved by the extrusion vector to the resulting SurfaceCollection. Returns ------------------------ SurfaceCollection""" boundary = self.get_boundary_paths() extruded_boundary = boundary.extrude(path) if enclose: path_vector = path.endpoint() - path.starting_point() return self + extruded_boundary + self.move(*path_vector) else: return self + extruded_boundary def revolve_boundary_x(self, angle=2*pi, enclose=True): """Revolve the boundary paths of the surface anti-clockwise around the x-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. enclose: bool Whether enclose the revolution by adding a copy of the original surface rotated over the angle to the resulting SurfaceCollection. Returns ----------------------- SurfaceCollection""" boundary = self.get_boundary_paths() revolved_boundary = boundary.revolve_x(angle) if enclose and not np.isclose(angle, 2*pi, atol=1e-8): return self + revolved_boundary + self.rotate(Rx=angle) else: return self + revolved_boundary def revolve_boundary_y(self, angle=2*pi, enclose=True): """Revolve the boundary paths of the surface anti-clockwise around the y-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. cap_extension: bool Whether to enclose the revolution by adding a copy of the original surface rotated over the angle to the resulting SurfaceCollection. Returns ----------------------- SurfaceCollection""" boundary = self.get_boundary_paths() revolved_boundary = boundary.revolve_y(angle) if enclose and not np.isclose(angle, 2*pi, atol=1e-8): return self + revolved_boundary + self.rotate(Ry=angle) else: return self + revolved_boundary def revolve_boundary_z(self, angle=2*pi, enclose=True): """Revolve the boundary paths of the surface anti-clockwise around the z-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. cap_extension: bool Whether to enclose the revolution by adding a copy of the original surface rotated over the angle to the resulting SurfaceCollection. Returns ----------------------- SurfaceCollection""" boundary = self.get_boundary_paths() revolved_boundary = boundary.revolve_z(angle) if enclose and not np.isclose(angle, 2*pi, atol=1e-8): return self + revolved_boundary + self.rotate(Rz=angle) else: return self + revolved_boundary def __add__(self, other): """Allows you to combine surfaces into a `SurfaceCollection` using the + operator (surface1 + surface2).""" if isinstance(other, Surface): return SurfaceCollection([self, other]) if isinstance(other, SurfaceCollection): return SurfaceCollection([self] + other.surfaces) return NotImplemented def mesh(self, mesh_size=None, mesh_size_factor=None, name=None, ensure_outward_normals=True): """Mesh the surface, so it can be used in the BEM solver. The result of meshing a surface are triangles. Parameters -------------------------- mesh_size: float Determines amount of elements in the mesh. A smaller mesh size leads to more elements. mesh_size_factor: float Alternative way to specify the mesh size, which scales with the dimensions of the geometry, and therefore more easily translates between different geometries. name: str Assign this name to the mesh, instead of the name value assinged to Surface.name Returns ---------------------------- `traceon.mesher.Mesh`""" if mesh_size is None: path_length = min(self.path_length1, self.path_length2) mesh_size = path_length / 4 if mesh_size_factor is not None: mesh_size /= sqrt(mesh_size_factor) name = self.name if name is None else name return _mesh(self, mesh_size, name=name, ensure_outward_normals=ensure_outward_normals) def __str__(self): return f"<Surface with name: {self.name}>"
A Surface is a mapping from two numbers to a three dimensional point. Note that
Surface
is a subclass ofGeometricObject
, and therefore can be easily moved and rotated.Ancestors
- GeometricObject
- abc.ABC
Static methods
def annulus_xy(x0, y0, inner_radius, outer_radius)
-
Expand source code
@staticmethod def annulus_xy(x0, y0, inner_radius, outer_radius): """Create a annulus in the XY plane. Parameters ------------------------ x0: float x-coordiante of the center of the annulus y0: float y-coordinate of the center of the annulus inner_radius: float inner radius of the annulus outer_radius: outer radius of the annulus Returns ----------------------- Surface""" assert inner_radius > 0 and outer_radius > 0, "radii must be positive" assert outer_radius > inner_radius, "outer radius must be larger than inner radius" annulus_at_origin = Path.line([inner_radius, 0.0, 0.0], [outer_radius, 0.0, 0.0]).revolve_z() return annulus_at_origin.move(dx=x0, dy=y0)
Create a annulus in the XY plane.
Parameters
x0
:float
- x-coordiante of the center of the annulus
y0
:float
- y-coordinate of the center of the annulus
inner_radius
:float
- inner radius of the annulus
outer_radius: outer radius of the annulus Returns
def annulus_xz(x0, z0, inner_radius, outer_radius)
-
Expand source code
@staticmethod def annulus_xz(x0, z0, inner_radius, outer_radius): """Create a annulus in the XZ plane. Parameters ------------------------ x0: float x-coordiante of the center of the annulus z0: float z-coordinate of the center of the annulus inner_radius: float inner radius of the annulus outer_radius: outer radius of the annulus Returns ----------------------- Surface""" assert inner_radius > 0 and outer_radius > 0, "radii must be positive" assert outer_radius > inner_radius, "outer radius must be larger than inner radius" annulus_at_origin = Path.line([inner_radius, 0.0, 0.0], [outer_radius, 0.0, 0.0]).revolve_y() return annulus_at_origin.move(dx=x0, dz=z0)
Create a annulus in the XZ plane.
Parameters
x0
:float
- x-coordiante of the center of the annulus
z0
:float
- z-coordinate of the center of the annulus
inner_radius
:float
- inner radius of the annulus
outer_radius: outer radius of the annulus Returns
def annulus_yz(y0, z0, inner_radius, outer_radius)
-
Expand source code
@staticmethod def annulus_yz(y0, z0, inner_radius, outer_radius): """Create a annulus in the YZ plane. Parameters ------------------------ y0: float y-coordiante of the center of the annulus z0: float z-coordinate of the center of the annulus inner_radius: float inner radius of the annulus outer_radius: outer radius of the annulus Returns ----------------------- Surface""" assert inner_radius > 0 and outer_radius > 0, "radii must be positive" assert outer_radius > inner_radius, "outer radius must be larger than inner radius" annulus_at_origin = Path.line([0.0, inner_radius, 0.0], [0.0, outer_radius, 0.0]).revolve_x() return annulus_at_origin.move(dy=y0, dz=z0)
Create a annulus in the YZ plane.
Parameters
y0
:float
- y-coordiante of the center of the annulus
z0
:float
- z-coordinate of the center of the annulus
inner_radius
:float
- inner radius of the annulus
outer_radius: outer radius of the annulus Returns
def aperture(height, radius, extent, z=0.0)
-
Expand source code
@staticmethod def aperture(height, radius, extent, z=0.): return Path.aperture(height, radius, extent, z=z).revolve_z()
def box(p0, p1)
-
Expand source code
@staticmethod def box(p0, p1): """Create a box with the two given points at opposite corners. Parameters ------------------------------- p0: (3,) np.ndarray double One corner of the box p1: (3,) np.ndarray double The opposite corner of the box Returns ------------------------------- Surface representing the box""" x0, y0, z0 = p0 x1, y1, z1 = p1 xmin, ymin, zmin = min(x0, x1), min(y0, y1), min(z0, z1) xmax, ymax, zmax = max(x0, x1), max(y0, y1), max(z0, z1) path1 = Path.line([xmin, ymin, zmax], [xmax, ymin, zmax]) path2 = Path.line([xmin, ymin, zmin], [xmax, ymin, zmin]) path3 = Path.line([xmin, ymax, zmax], [xmax, ymax, zmax]) path4 = Path.line([xmin, ymax, zmin], [xmax, ymax, zmin]) side_path = Path.line([xmin, ymin, zmin], [xmax, ymin, zmin])\ .extend_with_line([xmax, ymin, zmax])\ .extend_with_line([xmin, ymin, zmax])\ .close() side_surface = side_path.extrude([0.0, ymax-ymin, 0.0]) top = Surface.spanned_by_paths(path1, path2) bottom = Surface.spanned_by_paths(path4, path3) return (top + bottom + side_surface)
Create a box with the two given points at opposite corners.
Parameters
p0
:(3,) np.ndarray double
- One corner of the box
p1
:(3,) np.ndarray double
- The opposite corner of the box
Returns
Surface representing the box
def disk_xy(x0, y0, radius)
-
Expand source code
@staticmethod def disk_xy(x0, y0, radius): """Create a disk in the XY plane. Parameters ------------------------ x0: float x-coordiante of the center of the disk y0: float y-coordinate of the center of the disk radius: float radius of the disk Returns ----------------------- Surface""" assert radius > 0, "radius must be a positive number" disk_at_origin = Path.line([0.0, 0.0, 0.0], [radius, 0.0, 0.0]).revolve_z() return disk_at_origin.move(dx=x0, dy=y0)
Create a disk in the XY plane.
Parameters
x0
:float
- x-coordiante of the center of the disk
y0
:float
- y-coordinate of the center of the disk
radius
:float
- radius of the disk
Returns
def disk_xz(x0, z0, radius)
-
Expand source code
@staticmethod def disk_xz(x0, z0, radius): """Create a disk in the XZ plane. Parameters ------------------------ x0: float x-coordiante of the center of the disk z0: float z-coordinate of the center of the disk radius: float radius of the disk Returns ----------------------- Surface""" assert radius > 0, "radius must be a positive number" disk_at_origin = Path.line([0.0, 0.0, 0.0], [radius, 0.0, 0.0]).revolve_y() return disk_at_origin.move(dx=x0, dz=z0)
Create a disk in the XZ plane.
Parameters
x0
:float
- x-coordiante of the center of the disk
z0
:float
- z-coordinate of the center of the disk
radius
:float
- radius of the disk
Returns
def disk_yz(y0, z0, radius)
-
Expand source code
@staticmethod def disk_yz(y0, z0, radius): """Create a disk in the YZ plane. Parameters ------------------------ y0: float y-coordiante of the center of the disk z0: float z-coordinate of the center of the disk radius: float radius of the disk Returns ----------------------- Surface""" assert radius > 0, "radius must be a positive number" disk_at_origin = Path.line([0.0, 0.0, 0.0], [0.0, radius, 0.0]).revolve_x() return disk_at_origin.move(dy=y0, dz=z0)
Create a disk in the YZ plane.
Parameters
y0
:float
- y-coordiante of the center of the disk
z0
:float
- z-coordinate of the center of the disk
radius
:float
- radius of the disk
Returns
def from_boundary_paths(p1, p2, p3, p4)
-
Expand source code
@staticmethod def from_boundary_paths(p1, p2, p3, p4): """Create a surface with the four given paths as the boundary. Parameters ---------------------------------- p1: Path First edge of the surface p2: Path Second edge of the surface p3: Path Third edge of the surface p4: Path Fourth edge of the surface Returns ------------------------------------ Surface with the four giving paths as the boundary """ path_length_p1_and_p3 = (p1.path_length + p3.path_length)/2 path_length_p2_and_p4 = (p2.path_length + p4.path_length)/2 def f(u, v): u /= path_length_p1_and_p3 v /= path_length_p2_and_p4 a = (1-v) b = (1-u) c = v d = u return 1/2*(a*p1(u*p1.path_length) + \ b*p4((1-v)*p4.path_length) + \ c*p3((1-u)*p3.path_length) + \ d*p2(v*p2.path_length)) # Scale the breakpoints appropriately b1 = sorted([b/p1.path_length * path_length_p1_and_p3 for b in p1.breakpoints] + \ [b/p3.path_length * path_length_p1_and_p3 for b in p3.breakpoints]) b2 = sorted([b/p2.path_length * path_length_p2_and_p4 for b in p2.breakpoints] + \ [b/p4.path_length * path_length_p2_and_p4 for b in p4.breakpoints]) return Surface(f, path_length_p1_and_p3, path_length_p2_and_p4, b1, b2)
def rectangle_xy(xmin, xmax, ymin, ymax)
-
Expand source code
@staticmethod def rectangle_xy(xmin, xmax, ymin, ymax): """Create a rectangle in the XY plane. The path starts at (xmin, ymin, 0), and is counter clockwise around the z-axis. Parameters ------------------------ xmin: float Minimum x-coordinate of the corner points. xmax: float Maximum x-coordinate of the corner points. ymin: float Minimum y-coordinate of the corner points. ymax: float Maximum y-coordinate of the corner points. Returns ----------------------- Surface representing the rectangle""" return Path.line([xmin, ymin, 0.], [xmin, ymax, 0.]).extrude([xmax-xmin, 0., 0.])
Create a rectangle in the XY plane. The path starts at (xmin, ymin, 0), and is counter clockwise around the z-axis.
Parameters
xmin
:float
- Minimum x-coordinate of the corner points.
xmax
:float
- Maximum x-coordinate of the corner points.
ymin
:float
- Minimum y-coordinate of the corner points.
ymax
:float
- Maximum y-coordinate of the corner points.
Returns
Surface representing the rectangle
def rectangle_xz(xmin, xmax, zmin, zmax)
-
Expand source code
@staticmethod def rectangle_xz(xmin, xmax, zmin, zmax): """Create a rectangle in the XZ plane. The path starts at (xmin, 0, zmin), and is counter clockwise around the y-axis. Parameters ------------------------ xmin: float Minimum x-coordinate of the corner points. xmax: float Maximum x-coordinate of the corner points. zmin: float Minimum z-coordinate of the corner points. zmax: float Maximum z-coordinate of the corner points. Returns ----------------------- Surface representing the rectangle""" return Path.line([xmin, 0., zmin], [xmin, 0, zmax]).extrude([xmax-xmin, 0., 0.])
Create a rectangle in the XZ plane. The path starts at (xmin, 0, zmin), and is counter clockwise around the y-axis.
Parameters
xmin
:float
- Minimum x-coordinate of the corner points.
xmax
:float
- Maximum x-coordinate of the corner points.
zmin
:float
- Minimum z-coordinate of the corner points.
zmax
:float
- Maximum z-coordinate of the corner points.
Returns
Surface representing the rectangle
def rectangle_yz(ymin, ymax, zmin, zmax)
-
Expand source code
@staticmethod def rectangle_yz(ymin, ymax, zmin, zmax): """Create a rectangle in the YZ plane. The path starts at (0, ymin, zmin), and is counter clockwise around the x-axis. Parameters ------------------------ ymin: float Minimum y-coordinate of the corner points. ymax: float Maximum y-coordinate of the corner points. zmin: float Minimum z-coordinate of the corner points. zmax: float Maximum z-coordinate of the corner points. Returns ----------------------- Surface representing the rectangle""" return Path.line([0., ymin, zmin], [0., ymin, zmax]).extrude([0., ymax-ymin, 0.])
Create a rectangle in the YZ plane. The path starts at (0, ymin, zmin), and is counter clockwise around the x-axis.
Parameters
ymin
:float
- Minimum y-coordinate of the corner points.
ymax
:float
- Maximum y-coordinate of the corner points.
zmin
:float
- Minimum z-coordinate of the corner points.
zmax
:float
- Maximum z-coordinate of the corner points.
Returns
Surface representing the rectangle
def spanned_by_paths(path1, path2)
-
Expand source code
@staticmethod def spanned_by_paths(path1, path2): """Create a surface by considering the area between two paths. Imagine two points progressing along the path simultaneously and at each step drawing a straight line between the points. Parameters -------------------------- path1: Path The path characterizing one edge of the surface path2: Path The path characterizing the opposite edge of the surface Returns -------------------------- Surface""" length1 = max(path1.path_length, path2.path_length) length_start = np.linalg.norm(path1.starting_point() - path2.starting_point()) length_final = np.linalg.norm(path1.endpoint() - path2.endpoint()) length2 = (length_start + length_final)/2 def f(u, v): p1 = path1(u/length1*path1.path_length) # u/l*p = b, u = l*b/p p2 = path2(u/length1*path2.path_length) return (1-v/length2)*p1 + v/length2*p2 breakpoints = sorted([length1*b/path1.path_length for b in path1.breakpoints] + \ [length1*b/path2.path_length for b in path2.breakpoints]) return Surface(f, length1, length2, breakpoints)
Create a surface by considering the area between two paths. Imagine two points progressing along the path simultaneously and at each step drawing a straight line between the points.
Parameters
path1
:Path
- The path characterizing one edge of the surface
path2
:Path
- The path characterizing the opposite edge of the surface
Returns
def sphere(radius)
-
Expand source code
@staticmethod def sphere(radius): """Create a sphere with the given radius, the center of the sphere is at the origin, but can easily be moved by using the `mesher.GeometricObject.move` method. Parameters ------------------------------ radius: float The radius of the sphere Returns ----------------------------- Surface representing the sphere""" length1 = 2*pi*radius length2 = pi*radius def f(u, v): phi = u/radius theta = v/radius return np.array([ radius*sin(theta)*cos(phi), radius*sin(theta)*sin(phi), radius*cos(theta)]) return Surface(f, length1, length2)
Create a sphere with the given radius, the center of the sphere is at the origin, but can easily be moved by using the
mesher.GeometricObject.move
method.Parameters
radius
:float
- The radius of the sphere
Returns
Surface representing the sphere
Methods
def __add__(self, other)
-
Expand source code
def __add__(self, other): """Allows you to combine surfaces into a `SurfaceCollection` using the + operator (surface1 + surface2).""" if isinstance(other, Surface): return SurfaceCollection([self, other]) if isinstance(other, SurfaceCollection): return SurfaceCollection([self] + other.surfaces) return NotImplemented
Allows you to combine surfaces into a
SurfaceCollection
using the + operator (surface1 + surface2). def __call__(self, u, v)
-
Expand source code
def __call__(self, u, v): """Evaluate the surface at point (u, v). Returns a three dimensional point. Parameters ------------------------------ u: float First coordinate, should be 0 <= u <= self.path_length1 v: float Second coordinate, should be 0 <= v <= self.path_length2 Returns ---------------------------- (3,) np.ndarray of double""" return self.fun(u, v)
Evaluate the surface at point (u, v). Returns a three dimensional point.
Parameters
u
:float
- First coordinate, should be 0 <= u <= self.path_length1
v
:float
- Second coordinate, should be 0 <= v <= self.path_length2
Returns
(3,) np.ndarray of double
def extrude_boundary(self, vector, enclose=True)
-
Expand source code
def extrude_boundary(self, vector, enclose=True): """ Extrude the boundary paths of the surface along a vector. The vector gives both the length and the direction of the extrusion. Parameters ------------------------- vector: (3,) float The direction and length (norm of the vector) to extrude by. enclose: bool Whether enclose the extrusion by adding a copy of the original surface moved by the extrusion vector to the resulting SurfaceCollection. Returns ------------------------- SurfaceCollection""" boundary = self.get_boundary_paths() extruded_boundary = boundary.extrude(vector) if enclose: return self + extruded_boundary + self.move(*vector) else: return self + extruded_boundary
Extrude the boundary paths of the surface along a vector. The vector gives both the length and the direction of the extrusion.
Parameters
vector
:(3,) float
- The direction and length (norm of the vector) to extrude by.
enclose
:bool
- Whether enclose the extrusion by adding a copy of the original surface moved by the extrusion vector to the resulting SurfaceCollection.
Returns
def extrude_boundary_by_path(self, path, enclose=True)
-
Expand source code
def extrude_boundary_by_path(self, path, enclose=True): """Extrude the boundary paths of a surface along a path. The path does not need to start at the surface. Imagine the extrusion surface created by moving the boundary paths along the path. Parameters ------------------------- path: Path The path defining the extrusion. enclose: bool Whether to enclose the extrusion by adding a copy of the original surface moved by the extrusion vector to the resulting SurfaceCollection. Returns ------------------------ SurfaceCollection""" boundary = self.get_boundary_paths() extruded_boundary = boundary.extrude(path) if enclose: path_vector = path.endpoint() - path.starting_point() return self + extruded_boundary + self.move(*path_vector) else: return self + extruded_boundary
Extrude the boundary paths of a surface along a path. The path does not need to start at the surface. Imagine the extrusion surface created by moving the boundary paths along the path.
Parameters
path
:Path
- The path defining the extrusion.
enclose
:bool
- Whether to enclose the extrusion by adding a copy of the original surface moved by the extrusion vector to the resulting SurfaceCollection.
Returns
def get_boundary_paths(self)
-
Expand source code
def get_boundary_paths(self): """Get the boundary paths of the surface. Computes the boundary paths (edges) of the surface and combines them into a `PathCollection`. Non-closed paths get filtered out when closed paths are present, as only closed paths represent true boundaries in this case. Note that this function might behave unexpectedly for surfaces without any boundaries (e.g a sphere). Returns ---------------------------- PathCollection representing the boundary paths of the surface""" b1 = Path(lambda u: self(u, 0.), self.path_length1, self.breakpoints1, self.name) b2 = Path(lambda u: self(u, self.path_length2), self.path_length1, self.breakpoints1, self.name) b3 = Path(lambda v: self(0., v), self.path_length2, self.breakpoints2, self.name) b4 = Path(lambda v: self(self.path_length1, v), self.path_length2, self.breakpoints2, self.name) boundary = b1 + b2 + b3 + b4 if any([b.is_closed() for b in boundary.paths]): boundary = PathCollection([b for b in boundary.paths if b.is_closed()]) return boundary
Get the boundary paths of the surface. Computes the boundary paths (edges) of the surface and combines them into a
PathCollection
. Non-closed paths get filtered out when closed paths are present, as only closed paths represent true boundaries in this case. Note that this function might behave unexpectedly for surfaces without any boundaries (e.g a sphere).Returns
PathCollection representing the boundary paths
ofthe surface
def mesh(self, mesh_size=None, mesh_size_factor=None, name=None, ensure_outward_normals=True)
-
Expand source code
def mesh(self, mesh_size=None, mesh_size_factor=None, name=None, ensure_outward_normals=True): """Mesh the surface, so it can be used in the BEM solver. The result of meshing a surface are triangles. Parameters -------------------------- mesh_size: float Determines amount of elements in the mesh. A smaller mesh size leads to more elements. mesh_size_factor: float Alternative way to specify the mesh size, which scales with the dimensions of the geometry, and therefore more easily translates between different geometries. name: str Assign this name to the mesh, instead of the name value assinged to Surface.name Returns ---------------------------- `traceon.mesher.Mesh`""" if mesh_size is None: path_length = min(self.path_length1, self.path_length2) mesh_size = path_length / 4 if mesh_size_factor is not None: mesh_size /= sqrt(mesh_size_factor) name = self.name if name is None else name return _mesh(self, mesh_size, name=name, ensure_outward_normals=ensure_outward_normals)
Mesh the surface, so it can be used in the BEM solver. The result of meshing a surface are triangles.
Parameters
mesh_size
:float
- Determines amount of elements in the mesh. A smaller mesh size leads to more elements.
mesh_size_factor
:float
- Alternative way to specify the mesh size, which scales with the dimensions of the geometry, and therefore more easily translates between different geometries.
name
:str
- Assign this name to the mesh, instead of the name value assinged to Surface.name
Returns
def revolve_boundary_x(self, angle=6.283185307179586, enclose=True)
-
Expand source code
def revolve_boundary_x(self, angle=2*pi, enclose=True): """Revolve the boundary paths of the surface anti-clockwise around the x-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. enclose: bool Whether enclose the revolution by adding a copy of the original surface rotated over the angle to the resulting SurfaceCollection. Returns ----------------------- SurfaceCollection""" boundary = self.get_boundary_paths() revolved_boundary = boundary.revolve_x(angle) if enclose and not np.isclose(angle, 2*pi, atol=1e-8): return self + revolved_boundary + self.rotate(Rx=angle) else: return self + revolved_boundary
Revolve the boundary paths of the surface anti-clockwise around the x-axis.
Parameters
angle
:float
- The angle by which to revolve. THe default 2*pi gives a full revolution.
enclose
:bool
- Whether enclose the revolution by adding a copy of the original surface rotated over the angle to the resulting SurfaceCollection.
Returns
def revolve_boundary_y(self, angle=6.283185307179586, enclose=True)
-
Expand source code
def revolve_boundary_y(self, angle=2*pi, enclose=True): """Revolve the boundary paths of the surface anti-clockwise around the y-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. cap_extension: bool Whether to enclose the revolution by adding a copy of the original surface rotated over the angle to the resulting SurfaceCollection. Returns ----------------------- SurfaceCollection""" boundary = self.get_boundary_paths() revolved_boundary = boundary.revolve_y(angle) if enclose and not np.isclose(angle, 2*pi, atol=1e-8): return self + revolved_boundary + self.rotate(Ry=angle) else: return self + revolved_boundary
Revolve the boundary paths of the surface anti-clockwise around the y-axis.
Parameters
angle
:float
- The angle by which to revolve. THe default 2*pi gives a full revolution.
cap_extension
:bool
- Whether to enclose the revolution by adding a copy of the original surface rotated over the angle to the resulting SurfaceCollection.
Returns
def revolve_boundary_z(self, angle=6.283185307179586, enclose=True)
-
Expand source code
def revolve_boundary_z(self, angle=2*pi, enclose=True): """Revolve the boundary paths of the surface anti-clockwise around the z-axis. Parameters ----------------------- angle: float The angle by which to revolve. THe default 2*pi gives a full revolution. cap_extension: bool Whether to enclose the revolution by adding a copy of the original surface rotated over the angle to the resulting SurfaceCollection. Returns ----------------------- SurfaceCollection""" boundary = self.get_boundary_paths() revolved_boundary = boundary.revolve_z(angle) if enclose and not np.isclose(angle, 2*pi, atol=1e-8): return self + revolved_boundary + self.rotate(Rz=angle) else: return self + revolved_boundary
Revolve the boundary paths of the surface anti-clockwise around the z-axis.
Parameters
angle
:float
- The angle by which to revolve. THe default 2*pi gives a full revolution.
cap_extension
:bool
- Whether to enclose the revolution by adding a copy of the original surface rotated over the angle to the resulting SurfaceCollection.
Returns
Inherited members
class SurfaceCollection (surfaces)
-
Expand source code
class SurfaceCollection(GeometricObject): """A SurfaceCollection is a collection of `Surface`. It can be created using the + operator (for example surface1+surface2). Note that `SurfaceCollection` is a subclass of `traceon.mesher.GeometricObject`, and therefore can be easily moved and rotated.""" def __init__(self, surfaces): assert all([isinstance(s, Surface) for s in surfaces]) self.surfaces = surfaces self._name = None @property def name(self): return self._name @name.setter def name(self, name): self._name = name for surf in self.surfaces: surf.name = name def map_points(self, fun): return SurfaceCollection([s.map_points(fun) for s in self.surfaces]) def mesh(self, mesh_size=None, mesh_size_factor=None, name=None, ensure_outward_normals=True): """See `Surface.mesh`""" mesh = Mesh() name = self.name if name is None else name for s in self.surfaces: mesh = mesh + s.mesh(mesh_size=mesh_size, mesh_size_factor=mesh_size_factor, name=name, ensure_outward_normals=ensure_outward_normals) return mesh def __add__(self, other): """Allows you to combine surfaces into a `SurfaceCollection` using the + operator (surface1 + surface2).""" if isinstance(other, Surface): return SurfaceCollection(self.surfaces+[other]) if isinstance(other, SurfaceCollection): return SurfaceCollection(self.surfaces+other.surfaces) return NotImplemented def __iadd__(self, other): """Allows you to add surfaces to the collection using the += operator.""" assert isinstance(other, SurfaceCollection) or isinstance(other, Surface) if isinstance(other, Surface): self.surfaces.append(other) else: self.surfaces.extend(other.surfaces) def __getitem__(self, index): selection = np.array(self.surfaces, dtype=object).__getitem__(index) if isinstance(selection, np.ndarray): return SurfaceCollection(selection.tolist()) else: return selection def __len__(self): return len(self.surfaces) def __iter__(self): return iter(self.surfaces) def __str__(self): return f"<SurfaceCollection with {len(self.surfaces)} surfaces, name: {self.name}>"
A SurfaceCollection is a collection of
Surface
. It can be created using the + operator (for example surface1+surface2). Note thatSurfaceCollection
is a subclass ofGeometricObject
, and therefore can be easily moved and rotated.Ancestors
- GeometricObject
- abc.ABC
Instance variables
prop name
-
Expand source code
@property def name(self): return self._name
Methods
def __add__(self, other)
-
Expand source code
def __add__(self, other): """Allows you to combine surfaces into a `SurfaceCollection` using the + operator (surface1 + surface2).""" if isinstance(other, Surface): return SurfaceCollection(self.surfaces+[other]) if isinstance(other, SurfaceCollection): return SurfaceCollection(self.surfaces+other.surfaces) return NotImplemented
Allows you to combine surfaces into a
SurfaceCollection
using the + operator (surface1 + surface2). def __iadd__(self, other)
-
Expand source code
def __iadd__(self, other): """Allows you to add surfaces to the collection using the += operator.""" assert isinstance(other, SurfaceCollection) or isinstance(other, Surface) if isinstance(other, Surface): self.surfaces.append(other) else: self.surfaces.extend(other.surfaces)
Allows you to add surfaces to the collection using the += operator.
def mesh(self, mesh_size=None, mesh_size_factor=None, name=None, ensure_outward_normals=True)
-
Expand source code
def mesh(self, mesh_size=None, mesh_size_factor=None, name=None, ensure_outward_normals=True): """See `Surface.mesh`""" mesh = Mesh() name = self.name if name is None else name for s in self.surfaces: mesh = mesh + s.mesh(mesh_size=mesh_size, mesh_size_factor=mesh_size_factor, name=name, ensure_outward_normals=ensure_outward_normals) return mesh
See
Surface.mesh()
Inherited members